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Abstract

Let W : R ! (0;1) be continuous. Does W admit a
classical Jackson Theorem? That is, does there exist a se-
quence f�ng1n=1 of positive numbers with limit 0 such that
for 1 � p � 1,

inf
deg(P )�n

k(f � P )WkLp(R) � �nkf
0WkLp(R)

for all absolutely continuous f with kf 0WkLp(R) �nite? We
show that such a theorem is true i¤ both

lim
x!1

W (x)

Z x

0
W�1 = 0

and

lim
x!1

 
sup
[0;x]

W�1

!Z 1

x
W = 0;

with analogous limits as x ! �1. In particular W (x) =
exp (� jxj) does not admit a Jackson theorem of this type.
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We also construct weights that admit an L1 but not an L1
Jackson theorem (or conversely).
Keywords: Weighted approximation, polynomial approxi-
mation, Jackson-Bernstein theorems.

1 Introduction

Let W : R! (0;1). In about 1910, S.N. Bernstein posed a problem
that became known as Bernstein�s approximation problem. When
are the polynomials dense in the weighted space generated by W?
That is, when is it true that for every continuous f : R! R with

lim
jxj!1

(fW ) (x) = 0;

there exist a sequence of polynomials fPng1n=1 with

lim
n!1

k (f � Pn)WkL1(R) = 0?

This problem was resolved independently by Pollard, Mergelyan and
Achieser in the 1950�s.
For example [12, p. 153] Mergelyan showed that there is a positive

answer to Bernstein�s problem i¤Z 1

�1

log 
 (t)

1 + t2
dt =1;

where


 (z) = sup

�
jP (z)j : P a polynomial and sup

t2R

jP (t)W (t)jp
1 + t2

� 1
�
:

If W � 1 and is even, and ln 1=W (ex) is even and convex, a simpler
necessary and su¢ cient condition for density of the polynomials is
[12, p. 170] Z 1

0

ln 1=W (x)

1 + x2
dx =1:

In particular, for
W� (x) = exp (� jxj�) ; (1)
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the polynomials are dense i¤ � � 1.
In the 1950�s the search began for a quantitative form of Bernstein�s

Theorem. The �rst e¤orts in this direction were due to Dzrbasjan.
In the 1960�s and 1970�s, Freud and Nevai made major strides in this
topic [19], but e¤orts continue to this day, with many researchers
involved. One obvious question was whether there are analogues
of classical theorems of Jackson and Bernstein, dating back to the
early 20th century, for the unweighted case. The latter independently
proved that

inf
deg(P )�n

kf � PkL1[�1;1] �
C

n
kf 0kL1[�1;1];

with C independent of f and n, and the inf being over (algebraic)
polynomials of degree at most n. The rate is best possible amongst
absolutely continuous functions f on [�1; 1] whose derivative is
bounded. Jackson also obtained general results involving moduli of
continuity while Bernstein obtained tight forward and converse theo-
rems for trigonometric polynomials. For ordinary polynomials, many
of the problems were only resolved in the 1980�s [5], [8].
For the weights W�, where � > 1, it is known that if 1 � p � 1,

inf
deg(P )�n

k (f � P )W�kLp(R) � Cn�1+
1
�kf 0W�kLp(R); (2)

with C independent of f and n [8, p. 185, (11.3.5)], [17, p. 81,
(4.1.5a)]. Again the rate is best possible for the class of absolutely
continuous functions f with kf 0W�kLp(R) �nite. Freud proved these
for � � 2, and later E. Levin and the author provided the necessary
technical estimates to extend this to all � > 1. More general Jackson
type theorems involving weighted moduli of continuity for various
classes of weights were proved in [4], [6], [8], [9], [15], [17].
One particularly interesting case is � = 1, namely W1 (x) =

exp (� jxj). For this weight Bernstein�s approximation problem has
a positive solution, that is, the polynomials are dense. However, (2)
suggests that there may not be an analogue of a Jackson theorem,
because n�1+

1
� has limit 1. As a contra-indication, a result of Freud,

Giroux and Rahman [10, p. 360] for L1 suggests that possibly (2)
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is true with n�1+
1
� replaced by 1

logn
. They used the modulus of

continuity

! (f; ") = sup
jhj�"

Z 1

�1
j(fW1) (x+ h)� (fW1) (x)j dx+ "

Z 1

�1
jfW1j

and proved that

inf
deg(P )�n

k (f � P )W1kL1(R)

� C
�
!

�
f;

1

log n

�
+

Z
jxj�

p
n

jfW1j (x) dx
�
: (3)

Here C is independent of f and n. Ditzian, the author, Nevai and
Totik later extended this result [7] to a characterization in L1. Only
recently has it been possible to establish the analogous results in Lp,
p > 1 [16].
One of the conclusions of this paper is that there is no Jackson

type theorem like (2) for the weight W1. More generally we answer
the question: which weights admit a Jackson type theorem, of the
form (2), with

�
n�1+1=�

	1
n=1

replaced by some sequence f�ng
1
n=1 with

limit 0? We give our characterization in the following theorem:

Theorem 1.1 Let W : R ! (0;1) be continuous. The following
are equivalent:
(a) There exists a sequence f�ng

1
n=1 of positive numbers with limit 0

and with the following property. For each 1 � p � 1, and for all
absolutely continuous f with kf 0WkLp(R) �nite, we have

inf
deg(P )�n

k (f � P )WkLp(R) � �nkf 0WkLp(R); n � 1: (4)

(b) Both

lim
x!1

W (x)

Z x

0

W�1 = 0 (5)

and

lim
x!1

�
min
[0;x]

W

��1 Z 1

x

W = 0 (6)

with analogous limits as x! �1.
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Corollary 1.2 Let W : R ! (0;1) be continuous, with W = e�Q,
where Q (x) is di¤erentiable for large jxj, and

lim
x!1

Q0 (x) =1 and lim
x!�1

Q0 (x) = �1: (7)

Then there exists a sequence f�ng
1
n=1 of positive numbers with limit

0 such that for each 1 � p � 1, and for all absolutely continuous f
with kf 0WkLp(R) �nite, we have (4).

Corollary 1.3 Let W : R ! (0;1) be continuous, with W = e�Q,
where Q (x) is di¤erentiable for large jxj, and Q0 (x) is bounded for
large jxj. Then for both p = 1 and p = 1, there does not exist a
sequence f�ng

1
n=1 of positive numbers with limit 0 satisfying (4) for

all absolutely continuous f with kf 0WkLp(R) �nite.

Remarks
(a) The �rst condition (5) is necessary and su¢ cient for an L1 Jack-
son theorem, while the second (6) is necessary and su¢ cient for an
L1 Jackson theorem.
(b) For the case where Q is convex, and p < 1, Corollary 1.2 was
proved in [11]. It was used to relate asymptotic behavior of Sobolev
and ordinary orthogonal polynomials. Our Corollary 1.2 allows one
to relax the condition of convexity in Theorem 1.3 in [11].
(c) Of course f�ng

1
n=1 may decay arbitrarily slowly to 0, though they

are independent of p. The proof of Theorem 1.1 also shows that (5)
and (6) are necessary even if we allow a di¤erent sequence f�ng

1
n=1

for each di¤erent p.
(d) It may be possible that there is a modi�ed Jackson theorem valid
whenever the polynomials are dense in the relevant weighted space.
The form we believe likely is

inf
deg(P )�n

k (f � P )WkLp(R) � �nkf 0WkLp(R) + kfWkLp(jxj��n);

where f�ng
1
n=1 is an increasing sequence of positive numbers with

limit1, independent of the particular function f . However, it cannot
be established by the methods we use here.
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(e) An equivalent way to state Theorem 1.1 is as a Jackson-Favard
inequality

inf
deg(P )�n

k (f � P )WkLp(R) � �n inf
deg(P )�n�1

k (f 0 � P )WkLp(R):

An obvious question is the independence of the conditions (5) and
(6). Does either imply the other? In fact they are independent.
Moreover, we shall exhibit weights satisfying one but not the other,
and also admitting an L1 Jackson theorem but not an L1 Jack-
son theorem (or conversely). This is a highly unusual occurrence in
weighted approximation � in fact the �rst occurrence of this phe-
nomenon known to this author. Density of polynomials, and the
degree of approximation is almost invariably the same for any Lp
space (suitably weighted of course). We prove:

Theorem 1.4 (a) There exists W : R! (0;1) with

1 � W (x) = exp
�
�x2

�
� 2 (1 + jxj) ; x 2 R; (8)

admitting an L1 Jackson theorem , but not an L1 Jackson theorem.
That is, for p =1, there exist f�ng

1
n=1 with limit 0 at 1 satisfying

(4), but there does not exist such a sequence for p = 1.
(b) There exists W : R! (0;1) with

1 � W (x) = exp
�
�x2

�
� 2= (1 + jxj) ; x 2 R; (9)

admitting an L1 Jackson theorem, but not an L1 Jackson theorem.
That is, for p = 1, there exist f�ng

1
n=1 with limit 0 at 1 satisfying

(4), but there does not exist such a sequence for p =1.

We note that the weights in Theorem 1.4 are equal to the Hermite
weight W2 (x) = exp (�x2) �most�of the time, with spikes upwards
or downwards in small intervals. The weights we construct are not
decreasing in (0;1), though they can be made in�nitely di¤eren-
tiable. We expect that with more work one can construct decreasing
W in (0;1) still satisfying the conclusions of Theorem 1.4.
This paper is organised as follows: we prove restricted range in-

equalities in the next section, and an estimate for the �tails�
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kfWkLp(jxj��) in Section 3. In Section 4, we prove Theorem 1.1
and Corollaries 1.2 and 1.3. In Section 5, we prove Theorem 1.4.
Throughout C;C1; C2; : : : denote constants independent of n and x
and polynomials P of degree � n. The same symbol may denote
di¤erent constants in di¤erent occurrences.

2 Restricted range inequalities

Restricted range (or in�nite-�nite range) inequalities involve bound-
ing the norm of a weighted polynomial over the whole real line in
terms of the norm over a smaller interval depending only on the de-
gree of the polynomial. They play a major role in analysis of weighted
polynomials, orthogonal polynomials, and weighted potential theory.
A key example is the Mhaskar-Sa¤ identity [18]

kPW�kL1(R) = kPW�kL1(�C�n1=�;C�n1=�);

valid for all polynomials of degree � n and � > 0. The constant C�
is �smallest possible" and depends only on �. For further orientation
on this topic see [13], [17], [21]. Unfortunately, although there are
restricted range inequalities for very general weights, none of them
are applicable to the weights we use here. In this section we prove
two inequalities, that we may apply under the forward and converse
hypotheses of Theorem 1.1:

Theorem 2.1 Let W : R ! (0;1) be continuous and assume that
both

lim
x!1

W (x)

Z x

0

W�1 = 0 (10)

and

lim
x!1

�
min
[0;x]

W

��1 Z 1

x

W = 0 (11)

with analogous limits as x ! �1. Then there exists an increasing
sequence of positive numbers fqng1n=1 such that

lim
n!1

qn
n
= 0; (12)
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and such that for 1 � p � 1; n � 1, and all polynomials P of
degree � n,

kPWkLp(jxj�qn)=kPWkLp(R) � 2�nC1; (13)

where C1 is independent of n; p; P .

Theorem 2.2 Let W : R ! (0;1) be continuous, 1 � p � 1, and
assume that for each n � 0,

kxnW (x) kLp(R) <1: (14)

Then there exists an increasing sequence of positive numbers f�ng
1
n=1

such that for n � 1 and all polynomials P of degree � n,

kPWkLp(jxj��n) � C12
�nkPWkLp(�1;1); (15)

where C1 is independent of n; p; P .

We shall prove one lemma, then Theorem 2.1, and then prove the
far easier Theorem 2.2.

Lemma 2.3 Let W : R! (0;1) be continuous.
(a) Assume that � : [0;1) ! (0;1) is a decreasing function with
limit 0 at 1 such that for x > 0,

W (x)

Z x

0

W�1 � � (x) : (16)

For large enough n, let ` = ` (n) denote the smallest integer satisfying

`

� (`)1=2
� 4n: (17)

Then for large enough n,

sup
x�`(n)

xnW (x) � � (`)1=2 sup
x2[ 12 `(n);`(n)]

xnW (x) : (18)
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Moreover,

lim
n!1

` (n)

n
= 0: (19)

(b) In addition, assume that " : [0;1) ! (0;1) is a decreasing
function, such that for x > 0,�

min
[0;x]

W

��1 Z 1

x

W � " (x) : (20)

Then for x � 2u > 0,

W�1 (u)W (x) � 4� (0) " (0)

x2
: (21)

Proof
(a) Note �rst that (19) follows easily from the fact that � has limit 0
at 1. Fix n and let ` = ` (n). If x � `,Z x

1
2
`

tndt =
xn+1

n+ 1

"
1�

�
`

2x

�n+1#
� xn+1

2 (n+ 1)
:

Then

xnW (x) � 2 (n+ 1)

x

 Z x

1
2
`

tndt

!
W (x)

� 2 (n+ 1)

x

0@ sup
t2[ 12 `;x]

tnW (t)

1AW (x)

Z x

1
2
`

W�1 (t) dt

� 4n

`
� (`) sup

t2[ 1
2
`;1)

tnW (t) ;

by (16). Using our choice (17) of `, we continue this as

sup
x2[`;1)

xnW (x) � � (`)1=2 sup
t2[ 1

2
`;1)

tnW (t) :

If n is so large that � (`) < 1, this last inequality implies that tnW (t)
cannot attain its sup in [1

2
`;1) in [`;1). Hence

sup
x2[`;1)

xnW (x) � � (`)1=2 sup
t2[ 1

2
`;1;`)

tnW (t)

9



so we have (18).
(b) By Cauchy-Schwarz, for x > 0,

x

2
�
�Z x

x=2

W

�1=2�Z x

x=2

W�1
�1=2

:

Then

W (x) � � (x)R x
0
W�1 �

� (x)R x
x=2
W�1 �

� (x)

(x=2)2

Z x

x=2

W;

so

W�1 (u)W (x) � � (x) " (u)

(x=2)2

R x
x=2
WR1

u
W

� 4� (x) " (u)

x2
;

since u � x=2. 2

We note that (18) implies for each n � 0,

lim
x!1

xnW (x) = 0

and hence for every polynomial P ,

lim
x!1

P (x)W (x) = 0:

Proof of Theorem 2.1
Our approach is similar to that in [14]. Let P be a polynomial of
degree k � n, say

P (z) = c
kY
j=1

(z � xj) :

We assume c 6= 0, and split the zeros into �small" and �large" zeros:
we assume that

jxjj � ` (2n) ; j � i;
jxjj > ` (2n) ; j > i:

For juj � 1
2
` (2n) ; x � ` (2n) and i < j � k,����x� xju� xj

���� � 1 + x= jxjj
1� juj = jxjj

� 2
�
1 +

x

` (2n)

�
� 4 x

` (2n)
:
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Then for such x; u����P (x)P (u)

���� �
 

iY
j=1

2x

ju� xjj

!�
4

x

` (2n)

�k�i
:

We now apply a famous lemma of Cartan:�����
iY
j=1

(u� xj)
����� � "i

for u outside a set of linear measure at most 4e" [1, p. 175], [3, p. 350].
Choosing " = `(2n)

100
, we obtain����P (x)P (u)

���� � � 200x` (2n)

�k
�
�
200x

` (2n)

�n
;

for x � ` (2n), u 2
�
0; 1

2
` (2n)

�
nS, where

meas (S) � 4e

100
` (2n) <

1

8
` (2n) :

Here and in the sequel, meas denotes linear Lebesgue measure. Then
for such u,Z 1

400`(2n)

jP (x)W (x)jp dx

�
�
200

` (2n)

�np
jP (u)jp

Z 1

400`(2n)

xnpW p (x) dx: (22)

NextZ 1

400`(2n)

xnpW p (x) dx

�
 

sup
x�400`(2n)

x2nW (x)

!p
(400` (2n))�np+2p

Z 1

400`(2n)

x�2pdx

�

0@� (` (2n))1=2 sup
x2[ 12 `(2n);`(2n)]

x2nW (x)

1Ap

(400` (2n))�np+1

11



�

0@� (` (2n))1=2 sup
x2[ 12 `(2n);`(2n)]

W (x)

1Ap

400�np+1` (2n)np+1 ;

by Lemma 2.3(a). Moreover,
�
0; 1

4
` (2n)

�
nS has measure at least

1
8
` (2n), so we may choose u in this set such that

jP (u)jp � W (u)�p

meas
��
0; 1

4
` (2n)

�
nS
� Z
[0; 14 `(2n)]nS

jPW jp

� 8W (u)�p

` (2n)

Z
R
jPW jp :

Finally, from Lemma 2.3(b), for x 2
�
1
2
` (2n) ; ` (2n)

�
, and u 2�

0; 1
4
` (2n)

�
nS,

W�1 (u)W (x) � 16� (0) " (0)

` (2n)2
:

Putting these last 3 estimates in (22) (and dropping a factor of
� (` (2n))p=2 ` (n)�2p+1 = o (1)) givesZ 1

400`(2n)

jP (x)W (x)jp dx=
Z
R
jPW jp � 2�np` (2n)�2pCp;

where C is independent of n; p; P . A similar inequality holds over
(�1;�400` (2n)) and so, taking pth roots,

kPWkLp(jxj�400`(2n))=kPWkLp(R) � 2�nC1;

with C1 independent of n; p; P . Letting p ! 1 gives the result for
p =1 also. Thus we may take

qn = 400` (2n)

in Theorem 2.1. Note that (12) follows from (19) in Lemma 2.3.
Although this choice does not guarantee monotonicity of fqng1n=1, we
can easily modify the sequence to be monotone increasing. 2
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Proof of Theorem 2.2
Write

P (x) =
nX
j=0

ajx
j:

Here by Bernstein�s inequality [5, Cor. 1.2, p. 98], followed by Nikol-
skii�s inequality [5, Thm. 2.6, p. 102],

jajj =
����P (j) (0)j!

���� � nj

j!
kPkL1[�1;1]

� nj

j!

�
(p+ 1)n2

�1=p kPkLp[�1;1]
� nj

j!
en2kW�1kL1[�1;1]kPWkLp[�1;1]:

Then for � � n,

kPWkLp(jxj��)

� en2kW�1kL1[�1;1]kPWkLp[�1;1]
nX
j=0

nj

j!
kxjW (x) kLp(jxj��)

� en2kW�1kL1[�1;1]kPWkLp[�1;1]kx2nW (x) kLp(jxj��)
nX
j=0

n2j�2n

j!

� CkPWkLp[�1;1]kx2nW (x) kLp(jxj��);

where C depends only on W (not on n; p; P ). The �niteness (14) of
the norms for all monomials, shows that for large enough �,

Ckx2nW (x) kLp(jxj��) � 2�n:

We may choose �n to be this �. By an obvious process, we may also
ensure that f�ng

1
n=1 is increasing. 2

3 A Bound for Tails

The result of this section is:
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Theorem 3.1 Assume that W : R! (0;1) is continuous.
(a) Assume W satis�es (5) and (6), with analogous limits at �1.
Then there exists a decreasing positive function � : [0;1) ! (0;1)
with limit 0 at 1 such that for 1 � p � 1 and � � 0,

kfWkLp(Rn[��;�]) � � (�) kf 0WkLp(R) (23)

for all absolutely continuous functions f : R! R for which f (0) = 0
and the right-hand side is �nite.
(b) Conversely assume that (23) holds for p = 1 and for p =1, for
large enough �. Then the limits (5) and (6) in Theorem 1.1 are valid,
with analogous limits at �1.

Note that (5) is alone necessary and su¢ cient for the conclusion
of Theorem 3.1 to hold for p = 1, and (6) alone is necessary and
su¢ cient for the conclusion to hold for p = 1.
We shall prove Theorem 3.1(a) for p =1, then p = 1, and then use

interpolation to do the case 1 < p <1. The converse will be proved
at the end of this section. The ideas of proof of Theorem 3.1(a) go
back at least to G. Freud, and are elegantly presented, in the setting
of Freud weights, in Mhaskar�s monograph [17]. They are similar to
the ideas of proof of Hardy�s inequality. Note that there is no simple
analogue of this result for p < 1.
Proof of Theorem 3.1(a) for p =1
For x > 0,

(fW ) (x) =W (x)

Z x

0

(f 0W ) (t)W�1 (t) dt: (24)

Hence for � � 0,

sup
x��

jfW j (x) � kf 0WkL1(R) sup
x��

W (x)

Z x

0

W�1 (t) dt:

A similar inequality holds for x � ��. Now apply the limit (5):2

Proof of Theorem 3.1(a) for p = 1
For � � 0,Z 1

�

jfW j (x) dx =
Z 1

�

�����Z �

0

+

Z x

�

�
(f 0W ) (t)W�1 (t) dt

����W (x) dx

14



�
Z �

0

jf 0W j (t) dt
�
min
[0;�]

W

��1 Z 1

�

W (x) dx

+

Z 1

�

jf 0W j (t)W�1 (t)

�Z 1

t

W (x) dx

�
dt

�
�Z �

0

jf 0W j (t) dt
��

min
[0;�]

W

��1 Z 1

�

W (x) dx

+

�Z 1

�

jf 0W j (t) dt
�
sup
t��

�
W�1 (t)

�Z 1

t

W (x) dx

��
: (25)

A similar inequality holds over (�1;��). Now apply the limit (6). 2
Proof of Theorem 3.1(a) for 1 < p <1
The above implies that for p = 1 and p =1, there exists a decreasing
positive function � : [0;1)! (0;1) with limit 0 at1 such that for
� � 0,

kfWkLp(Rn[��;�]) � � (�) kf 0WkLp(R);
for all absolutely continuous f with f (0) = 0 and for which the norm
on the right-hand side is �nite. Let us �x � � 0 and set g = f 0, and
de�ne the linear operator

L [g] (x) = �Rn[��;�] (x)

Z x

0

g (t) dt;

where �Rn[��;�] (x) is the characteristic function of Rn [��; �]. We see
that we have proved

kL [g]WkLp(R) � � (�) kgWkLp(R)

for p = 1;1 and for all measurable g with gW 2 Lp (R). The Riesz-
Thorin Theorem [2, p. 196] then shows this is true for all 1 < p <1.
Substituting back g = f 0 gives the result as stated. 2

Proof of Theorem 3.1(b): the case p =1
Next, let us �x � > 0 and de�ne

f (x) =

8<:
0; x < 0;R x
0
W�1; x 2 [0; �];R �

0
W�1; x > �:
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Then f 0 = W�1 in (0; �) and f 0 = 0 in Rn[0; �]. We see from (23)
that

� (�) = � (�) kf 0WkL1(R) � (fW ) (�) =W (�)

Z �

0

W�1:

So we obtain (5). The analogous limit at �1 is similar. 2

Proof of Theorem 3.1(b): the case p = 1
First note that if we take f to be an absolutely continuous function
with bounded derivative that is 0 at 0 and equal to 1 outside [�1; 1],
our hypothesis (23) gives

lim
�!1

kWkL1(Rn[��;�]) = 0: (26)

Next, let us �x � > 0, and choose t0 2 [0; �] such that

W (t0) = min
[0;�]

W:

For large enough �, (26) shows that t0 > 0. Choose � 2
�
0; t0

2

�
and

de�ne

f (x) =

8<:
0; x < t0 � �;
1
�

R x
t0��W

�1; x 2 [t0 � �; t0];
1
�

R t0
t0��W

�1; x > t0:

Then f 0 = 1
�
W�1 in (t0 � �; t0) and f 0 = 0 in Rn [t0 � �; t0]. We see

from (23) that

� (�) = � (�) kf 0WkL1(R) � kfWkL1(�;1):

Moreover, as f 0 � 0, we see that

kfWkL1(�;1) =
Z 1

�

����Z t0

t0��

1

�
W�1 (t) dt

����W (x) dx

�
�
max
[t0��;t0]

W

��1 Z 1

�

W (x) dx:

Thus

� (�) �
�
max
[t0��;t0]

W

��1 Z 1

�

W (x) dx:
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Since � may be made arbitrarily small and W is continuous, we
obtain

� (�) � W (t0)
�1
Z 1

�

W (x) dx =

�
min
[0;�]

W

��1 Z 1

�

W (x) dx:

So we obtain (6). The analogous limit at �1 is similar. 2

4 Proof of Theorem 1.1 and its Corol-
laries

We shall prove the su¢ ciency part of Theorem 1.1 after two lem-
mas. Throughout this section, we use special notation. We shall use
integers n � 4 and 1 � m � n

4
, as well as parameters

1 < � � 1

2
qm; (27)

where fqng1n=1 is as in Theorem 2.1. We denote by � (m) an increasing
function that depends on m and W , while � (�) denotes a function
increasing in �. These functions change in di¤erent occurrences. The
main feature is that � is independent ofm, n, p and functions f , while
� is independent of �, p and functions f . At the end, we choose m to
grow slowly enough as a function of n, and then �!1 su¢ ciently
slowly.

Lemma 4.1 Let W : R! (0;1) be continuous and satisfy (5), (6)
with analogous limits at �1.
(a) There is an increasing function � : [0;1) ! [0;1) with the
following properties: let m � 1 and � � 1. For 1 � p � 1 and all
absolutely continuous f with f 0W 2 Lp (R), there exists a polynomial
Rm of degree � m such that

k (f �Rm)WkLp[�2�;2�] �
� (�)

m
kf 0WkLp(R): (28)

(b) Moreover there is an increasing function � : Z+ ! (0;1) de-
pending only on W such that

kRmWkLp(R) + kRmWkL1(R) � � (m)
�
kfWkLp(R) + kf 0WkLp(R)

�
:

(29)

17



Proof
(a) By the classical form of Jackson�s Theorem [5, (6.4), Theorem 6.2,
p. 219], translated from [�1; 1] to [��; �], there exists Rm of degree
� m with

kf �RmkLp[�2�;2�] �
��

m+ 1
kf 0kLp[�2�;2�]: (30)

Then

k (f �Rm)WkLp[�2�;2�]

� ��

m
kWkL1[�2�;2�]k

1

W
kL1[�2�;2�]kf 0WkLp(R):

So we can take

� (�) = ��kWkL1[�2�;2�]k
1

W
kL1[�2�;2�]:

(b) By the restricted range inequalities in Theorem 2.1, for some C
independent of f; p;m,

kRmWkLp(R) + kRmWkL1(R)
� C

�
kRmWkLp[�qm;qm] + kRmWkL1[�qm;qm]

�
� CkRmkL1[�qm;qm]

�
kWkLp(R) + kWkL1(R)

�
:

Here simple estimation shows that

kWkLp(R) �
�
1 + kWkL1(R)

� �
1 + kWkL1(R)

�
:

So for some C1 independent of f; p;m,

kRmWkLp(R) + kRmWkL1(R) � C1kRmkL1[�qm;qm]: (31)

Recall the Chebyshev inequality [5, Proposition 2.3, p. 101], valid for
polynomials P of degree � m:

jP (x)j � jTm (x)j kPkL1[�1;1]; jxj > 1:

Here Tm is the classical Chebyshev polynomial of the �rst kind. By
dilating this, and using the bound

jTm (x)j � (2 jxj)m ; jxj > 1;
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we obtain

kRmkL1[�qm;qm] �
�qm
�

�m
kRmkL1[�2�;2�]:

Using Nikolskii inequalities [5, Theorem 2.6, p. 102], we continue this
as

�
�qm
�

�m�(p+ 1)m2

2�

�1=p
kRmkLp[�2�;2�]

� eqmmm2=p

�
kfkLp[�2�;2�] +

��

m
kf 0kLp[�2�;2�]

�
;

by the fact that � � 1 and by (30). Using our bound (27) on �, we
continue this as

kRmkL1[�qm;qm] � eqmmm2kW�1kL1[�qm;qm]
� (1 + �qm)

�
kfWkLp[�2�;2�] + kf 0WkLp[�2�;2�]

�
:

Combining this and (31) gives the result, with

� (m) = C1eq
m
mm

2kW�1kL1[�qm;qm] (1 + �qm) : 2

Next we construct polynomials that approximate the characteristic
function of [��; �] in a suitable sense:

Lemma 4.2 There exists C > 0 such that for n � 8, and for 1 �
� � 1

2
qn, there are nonnegative polynomials Vn of degree � 3n=4 such

that
(a)

j1� Vn (x)j � C
qn
n�
; x 2 [��; �]; (32)

0 � Vn (x) � C; jxj 2 [�; 2�] ; (33)

0 � Vn (x)

� C
� qn
n�

�2
exp

 
�
�
n

16qn
jjxj � 2�j

�1=2!
; jxj 2 [2�; qn] : (34)
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Here C is independent of n; � and x.
(b) Moreover, for 1 � p � 1,

k1� VnkLp[��;�] � C1
qn
n
; (35)

and
kVnkLp[�qn;qn]n[�2�;2�] � C1

qn
n
; (36)

with C1 independent of n, �, and p.

Proof
(a) Let us �x n and set

r =
�

qn
2
�
0;
1

2

�
:

Step 1 Approximate via Jackson�s Theorem
De�ne a piecewise linear function hn : [�1; 1]! [0; 1] by

hn (x) =

8<:
1; jxj � r;
2� jxj

r
; r < jxj � 2r;

0; 2r < jxj � 1:

Then hn is continuous with piecewise constant derivative. By Jack-
son�s Theorem [5, (6.4), p. 219], there is a polynomial Un of degree
� n

8
such that

khn � UnkL1[�1;1] �
�

2 (n=8)
kh0nkL1[�1;1] =

4�qn
n�

: (37)

Step 2 Use fast decreasing polynomials to damp near [�1; 1]
Nevai and Totik [20, Corollary 2, p. 117] showed that there exist
polynomials Pn of degree � n=8 such that for x 2 [�1; 1],

jPn (x)� sign (x)j � C exp
�
�
hn
8
jxj
i1=2�

:

The constant C is independent of n and x. For a 2 [0; 1], we set

Sn;a (x) =
1

2

�
1 + Pn

�
x� a
1 + a

��
:
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Since x 2 [�1; 1]) x�a
1+a

2 [�1; 1], and since (except at x = a),

�(a;1) (x) =
1

2

�
1 + sign

�
x� a
1 + a

��
we have

��Sn;a (x)� �(a;1) (x)�� � C exp
 
�
�
n

8

����x� a1 + a

�����1=2
!

� C exp
�
�
h n
16
jx� aj

i1=2�
:

For a 2 [�1; 0), we set

Sn;a (x) = 1� Sn;�a (�x) ;

and see that it admits a similar estimate. Now we set

Rn (x) = Sn;�2r (x) (1� Sn;2r (x)) ;

a polynomial of degree � n=2, and use

�[�2r;2r] (x) = �(�2r;1) (x)
�
1� �(2r;1) (x)

�
(except at x = �2r) to deduce that for x 2 [�1; 1],

��Rn (x)� �[�2r;2r] (x)�� � C exp�� h n16 jx� 2rji1=2
�

+ C exp

�
�
h n
16
jx+ 2rj

i1=2�
� C exp

�
�
h n
16
jjxj � 2rj

i1=2�
: (38)

Step 3 Combine Un and Rn
We set

Vn (x) = U
2
n

�
x

qn

�
R2n

�
x

qn

�
;
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a nonnegative polynomial of degree at most 3n
4
. Note here that

qn
n�

� qn
n
= o (1) :

From (37) and (38), we see that for x 2 [��; �] = [�qnr; qnr],

j1� Vn (x)j � C1

"
qn
n�
+ exp

 
�
�
n�

16qn

�1=2!#
;

with C1 independent of n; x; �. Then (32) follows. It is easy to deduce
(33). Next in [2�; qn], (37) and (38) give

0 � Vn (x) �
�
C0qn
n�

�2
exp

 
�
�
n

16qn
jjxj � 2�j

�1=2!
:

(b) The �rst inequality (35) is immediate from (32) and the fact that
��1+1=p � 1. For the second, we use (34): if p <1,

kVnkpLp[2�;qn] �
�
C0qn
n�

�2p Z qn

2�

exp

 
�
�
p2n

16qn
jx� 2�j

�1=2!
dx

�
�
C0qn
n�

�2p
16qn
p2n

Z 1

0

exp
�
�s1=2

�
ds:

Since p � 1 and qn is independent of p and is o (n), we obtain for
p <1 and some C1 independent of n; p,

kVnkLp[2�;qn] � C1
� qn
n�

�2
� C1

qn
n
:

Letting p!1 gives the result for p =1 also. 2

Proof of the su¢ ciency part of Theorem 1.1
We may assume that f (0) = 0. (If not, replace f by f � f (0) and
absorb the constant f (0) into the approximating polynomial.) We
choose n � 8 and 1 � m � n=4, and let � satisfy 1 � � � 1

2
qm. Let

Rm and Vn denote the polynomials of Lemma 4.1 and 4.2 respectively,
and let

Pn = RmVn:
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Then Pn is a polynomial of degree � n, and

inf
deg(P )�n

k (f � P )WkLp(R) � k (f � Pn)WkLp(R)

� k (f � Pn)WkLp[�qn;qn]
+ kfWkLp(Rn[�qn;qn]) + kPnWkLp(Rn[�qn;qn])

� k (f � Pn)WkLp[�qn;qn]
+ kfWkLp(Rn[��;�]) + C2�nkPnWkLp[�qn;qn]; (39)

by Theorem 2.1 and as qn > �. Next,

k (f � Pn)WkLp[�qn;qn] � k (f � Pn)WkLp[��;�] + kfWkLp(Rn[��;�])
+ kPnWkLp([�qn;qn]n[��;�])

=: T1 + T2 + T3: (40)

Firstly

T1 � k (f �Rm)WkLp[��;�] + kRm (1� Vn)WkLp[��;�]
� k (f �Rm)WkLp[��;�] + kRmWkL1[��;�]k1� VnkLp[��;�]

� � (�)

m
kf 0WkLp(R) + � (m)

�
kfWkLp(R)

+ kf 0WkLp(R)
�
k1� VnkLp[��;�]

� � (�)

m
kf 0WkLp(R) + C1� (m)

qn
n
kf 0WkLp(R); (41)

by Lemmas 4.1, 4.2(b) and Theorem 3.1. Here C1 is independent of
f;m; n; �; �. Since f (0) = 0, Theorem 3.1 gives

kfWkLp(R) � � (0) kf 0WkLp(R):

The crucial thing in (41) is that � and � are independent of f; n; p.
Next, if � is as in Theorem 3.1,

T2 � � (�) kf 0WkLp(R): (42)

Of course this estimate also applies to the middle term in the right-
hand side of (39). Next,

T3 � kPnWkLp(��jxj�2�) + kPnWkLp(2��jxj�qn) =: T31 + T32:
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Here

T31 � kRmWkLp(��jxj�2�)kVnkL1(��jxj�2�)
� C

�
k (Rm � f)WkLp(��jxj�2�) + kfWkLp(��jxj�2�)

�
� C

�
� (�)

m
kf 0WkLp(R) + � (�) kf 0WkLp(R)

�
; (43)

by Lemmas 4.1, 4.2 and Theorem 3.1. Next,

T32 � kRmWkL1(2��jxj�qn)kVnkLp(2��jxj�qn)
� � (m)

�
kf 0WkLp(R)

�
C1
qn
n
:

by Lemmas 4.1, 4.2 and another application of Theorem 3.1. Com-
bining this and the estimates in (40) to (43) gives for n � 8,

k (f � Pn)WkLp[�qn;qn]

� kf 0WkLp(R)C
�
� (�)

m
+ � (m)

qn
n
+ � (�)

�
: (44)

Then using this estimate and Theorem 3.1, we deduce that

kPnWkLp[�qn;qn] � kf 0WkLp(R)C
�
� (�)

m
+ � (m)

qn
n
+ 1

�
:

Combining this estimate, (39) and (44) gives

inf
deg(P )�n

k (f � P )WkLp(R)

� kf 0WkLp(R)C
�
� (�)

m
+ � (m)

qn
n
+ � (�) + 2�n

�
;

with C independent of n;m; �; �; �. The functions � and � obey the
conventions listed at the beginning of this section, and are indepen-
dent of f; n;m; p, as is the constant C. For a given large enough
n � 8, we choose m = m (n) to be the largest integer � n=2 such
that

� (m)
qn
n
�
�qn
n

�1=2
:
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Since (by Theorem 2.1) qn=n ! 0 as n ! 1, while � is increasing
and �nite valued, necessarily m = m (n) approaches 1 as n ! 1.
Next, for the given m = m (n), we choose the largest � = � (n) � m
such that

� (�) �
p
m

As � is �nite valued, necessarily � (n) ! 1 , so � (� (n)) ! 0,
n!1. Then for some sequence f�ng

1
n=1 with limit 0, and which is

independent of f; p,

inf
deg(P )�n

k (f � P )WkLp(R) � �nkf 0WkLp(R):

For the remaining �nitely many n, say for n � n1, we use Theorem 3.1
to deduce that

inf
deg(P )�n

k (f � P )WkLp(R) � kfWkLp(R) � � (0) kf 0WkLp(R):

We choose �n = � (0) for n � n1. 2

Proof of the necessity part of Theorem 1.1
We assume that (4) is true for every absolutely continuous f with
kf 0WkLp(R) �nite, where p = 1 or p =1. In particular, if we choose
f to be 0 outside [�1; 1], and not a polynomial in [�1; 1], we obtain
for some sequence fPng1n=1 of polynomials with degrees tending to
1,

kPnWkLp(jxj�1) ! 0; n!1:
As Pn behaves for large jxj like its leading term, this forces

sup
n�1

kxnW (x) kLp(R) <1:

Then the hypothesis (14) of Theorem 2.2 is ful�lled, and consequently
there exist f�ng

1
n=1 such that (15) holds for all polynomials Pn of

degree � n. Let us now consider an absolutely continuous f with
f (0) = 0 and kf 0WkLp(R) �nite. Our hypothesis asserts that there
are for large n polynomials fPng1n=1 of degree � n with

k (f � Pn)WkLp(R) � �nkf 0WkLp(R)
) kfWkLp(jxj��n) � �nkf

0WkLp(R) + kPnWkLp(jxj��n):
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Here by Theorem 2.2, and then our hypothesis on fPng1n=1,

kPnWkLp(jxj��n) � C2
�nkPnWkLp[�1;1]

� C2�n
�
kfWkLp[�1;1] + �nkf 0WkLp(R)

�
:

Here if p = 1,

kfWkLp[0;1] � kWkL1[0;1]
Z 1

0

����Z x

0

f 0 (t) dt

���� dx
� kWkL1[0;1]

Z 1

0

jf 0 (t)j dt

� kWkL1[0;1]kW�1kL1[0;1]
Z 1

0

j(f 0W ) (t)j dt:

A similar inequality holds over [�1; 0] and hence

kfWkL1[�1;1] � 2kWkL1[�1;1]kW�1kL1[�1;1]kf 0WkL1[�1;1]:

The case p =1 is easier. Combining all the above inequalities gives

kfWkLp(jxj��n) � �
�
nkf 0WkLp(R);

where f��ng
1
n=1 has limit 0 and is independent of f . The same in-

equality then holds for the Lp norm of fW over jxj � �, where
� 2

�
�n; �n+1

�
. If � � �1, we can just use Theorem 3.1 and the result

for � � �1. It follows that there is a positive decreasing function �
with limit 0 at 1 such that (23) holds for absolutely continuous f
with f (0) = 0 and kf 0WkLp(R) �nite. Then Theorem 3.1 gives the
limits (5) and (6). 2

Proof of Corollary 1.2
We must prove the limits (5) and (6). We do the second �rst. Let
A > 0. Choose R > 0 such that

u � R) Q0 (u) � A:

Then for x � R and t 2 [x;1),

W (x)�1W (t) = eQ(x)�Q(t)

= e�Q
0(�)(t�x) � e�A(t�x);
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where � lies between t and x. Then for u � R and x 2 [R; u]

W�1 (x)

Z 1

u

W (t) dt �
Z 1

u

e�A(t�x)dt � 1

A
:

For x 2 [0; R], this last inequality gives

W�1 (x)

Z 1

u

W (t) dt � W�1 (x)
W (u)

A

Hence for such u,�
min
[0;u]

W

��1 Z 1

u

W � max
(�

min
[0;R]

W

��1
W (u)

A
;
1

A

)
:

Since our hypothesis forces Q to have limit 1 at 1, we obtain

lim sup
u!1

�
min
[0;u]

W

��1 Z 1

u

W � 1

A
:

As A may be arbitrarily large, we have (6). Next, if x � R, we
similarly see that

W (x)

Z x

0

W�1 (t) dt � W (x)

Z R

0

W�1 (t) dt+

Z x

R

e�A(x�t)dt

� W (x)

Z R

0

W�1 (t) dt+
1

A
:

Then

lim sup
x!1

W (x)

Z x

0

W�1 (t) dt � 1

A
:

Again (5) follows as A > 0 is arbitrary. 2

Proof of Corollary 1.3
Let us choose �xed B > 0 and R > 0 such that

u � R) Q0 (u) � B:
Then for x � R and t 2 [x;1),

W (x)�1W (t) = eQ(x)�Q(t) = e�Q
0(�)(t�x) � e�B(t�x);

so

W (x)�1
Z 1

x

W (t) dt �
Z 1

x

e�B(t�x)dt =
1

B
:

Hence (6) fails. Similarly (5) fails. 2
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5 Proof of Theorem 1.4

In this section, we let

W2 (x) = exp
�
�x2

�
; x 2 R;

denote the Hermite weight. We choose intervals

[j � �j; j + �j]; j � 2

where �j 2 (0; 1), and decays rapidly to 0 as j !1. We set

W (x) =W2 (x) ; x 2 Rn
1[
j=2

(j � �j; j + �j) : (45)

For Theorem 1.4(a), where we want an L1 Jackson theorem, but not
an L1 Jackson theorem, we set

W (j) =W2 (j) =j; j � 2: (46)

For Theorem 1.4 (b), we set

W (j) =W2 (j) j; j � 2: (47)

In both cases we then de�ne W so that W=W2 is linear in [j � �j; j]
and in [j; j + �j]. This ensures thatW is continuous in R. (Of course
we could ensure it is C1 by smoothing at j and j��j.) It also implies
under (46) that,

1 � W (x) =W2 (x) �
1

1 + jxj ; x 2 R; (48)

and under (47),

1 � W (x) =W2 (x) � 1 + jxj ; x 2 R: (49)

In proving the Jackson theorem for W in the relevant Lp, we shall
need a restricted range inequality. This does not follow from Theorem
2.1, since at least one of the conditions there is not ful�lled. Using
classical results for the Hermite weight, we prove:
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Lemma 5.1 Let W be as above, satisfying either (48) or (49). Let
1 � p � 1. Then there exist C1 > 0 and C2 > 0 such that for n � 1
and polynomials P of degree � n,

kPWkLp(jxj�2pn)=kPWkLp(R) � C1e
�nC2 : (50)

Proof
For both cases, we have for jxj � 2,

1

1 + jxj � W (x) =W2 (x) � 3 j1 + xj ; (51)

so for all n,

kPWkLp(jxj�2pn) � 2kP (x) (1 + x)W2 (x) kLp(jxj�2pn):

Since P (x) (1 + x) is of degree � n + 1, we obtain from classical
inequalities [18], [21, Thm. VI.5.1, p. 334], that we can continue this
as

� C1e�nC2kP (x) (1 + x)W2 (x) kLp(jxj� 3
2

p
n+1)

� Cne�nC2kP (x)W2 (x)

1 + jxjkLp(jxj� 3
2

p
n+1)

� Ce�nC3kP (x)W (x) kLp(jxj� 3
2

p
n+1);

by (51). Then (50) follows. 2

Next, we show that the weights W de�ned above satisfy exactly
one of the limit relations in Theorem 1.1:

Lemma 5.2 (a) Let W satisfy (45), (46) and (48). If we choose the
sequence f�jg to decay su¢ cently rapidly to 0, then the limit (5) in
Theorem 1.1 is true, while the limit (6) fails.
(b) LetW satisfy (45), (47) and (49). If we choose the sequence f�jg
to decay su¢ cently rapidly to 0, then the limit (6) in Theorem 1.1 is
true, while the limit (5) fails.
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Proof
We choose the f�jg1j=1 so small that for large enough x > 0,

1

2
�
Z x

0

W�1=

Z x

0

W�1
2 � 2 (52)

and
1

2
�
Z 1

x

W=

Z 1

x

W2 � 2: (53)

For example, this will be true if

�j < (2 + j)
�12�j�3W2 (j + 1) ; j � 1: (54)

Indeed, using our bound (51), this impliesZ 1

�1

��W�1 �W�1
2

�� = 1X
j=2

Z j+�j

j��j

��W�1 �W�1
2

��
�

1X
j=2

6�j (1 + j + �j)W
�1
2 (j + 1)

�
1X
j=2

2�j =
1

2
<
1

2

Z 1

0

W�1
2 :

Then (52) follows easily. Next,Z 1

x

jW �W2j �
X
j�x

Z j+�j

j��j
jW �W2j

�
X
j�x

6�j (1 + j + �j)W2 (j � 1)

�
X
j�x

2�jW2 (j + 1) � 21�x
Z 1

x

W2;

so (53) follows.
(a) Now from (48) and (52) for large enough x,

W (x)

Z x

0

W�1 � W2 (x)

Z x

0

W�1 � 2W2 (x)

Z x

0

W�1
2 :
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It is easily checked that the last right-hand side approaches 0 (or
follows from the well known fact that the Hermite weight admits a
Jackson Theorem in all Lp, together with Theorem 1.1). So (5) is
true. Since W = W2 in (�1; 0), the limit at �1 is immediate. On
the other hand, by (46) and (53), for large enough j,

W�1 (j)

Z 1

j

W � jW�1
2 (j)

1

2

Z 1

j

W2

� 1

8
W�1
2 (j)

Z 2j

j

W2 (s) 2s ds �
1

16
;

for j large enough. So (6) fails.
(b) Now from (49) and (53) for large enough x,�

min
[0;x]

W

��1 Z 1

x

W � W�1
2 (x)

Z 1

x

W � 2W�1
2 (x)

Z 1

x

W�1
2 :

Again it is easily checked that the last right-hand side approaches 0.
So (6) is true. On the other hand by (47) and (52), for large enough
j,

W (j)

Z j

0

W�1 � jW2 (j)
1

2

Z j

0

W�1
2

� W2 (j)
1

4

Z j

0

W�1
2 (s) 2s ds

=
1

4
(1�W2 (j)) :

So (5) fails. 2

Proof of Theorem 1.4(a)
Now W of (45), (46), (48) admits the restricted range inequality
Lemma 5.1. Also the limit (5) is true, together with its analogue
at �1. Then the exact proof that we used before in the proof of
Theorem 1.1(a) gives an L1 Jackson theorem. Note that we can take
qn = 2

p
n, so qn = o (n).

On the other hand, we have shown in Lemma 5.2 that the limit
(6) fails, and then the proof of Theorem 1.1(b) shows that there is
no L1 Jackson theorem. 2
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Proof of Theorem 1.4(b)
Now W of (45), (47), (49) admits the restricted range inequality
Lemma 5.1. Also the limit (6) is true, together with its analogue
at �1. Then the exact proof that we used before in the proof of
Theorem 1.1(a) gives an L1 Jackson theorem. Note again that we
can take qn = 2

p
n.

On the other hand, we have shown that the limit (5) fails, so the
proof of Theorem 1.1(b) shows that there is no L1 Jackson theo-
rem. 2
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