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Abstract

Let W : R — (0,00) be continuous. Does W admit a
classical Jackson Theorem? That is, does there exist a se-
quence {n,}-2; of positive numbers with limit 0 such that
for 1 <p< o,

w2 = PIWli @) < LW ey o

for all absolutely continuous f with || f'W|; ) finite? We
show that such a theorem is true iff both

lim W(az)/ wt=0
r—00 0

lim <supW_1>/ W =0,
T—00 \ [0,x] x

with analogous limits as © — —oo. In particular W (z) =
exp (— |z|) does not admit a Jackson theorem of this type.

and
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We also construct weights that admit an L; but not an L
Jackson theorem (or conversely).

Keywords: Weighted approximation, polynomial approxi-
mation, Jackson-Bernstein theorems.

1 Introduction

Let W : R — (0,00). In about 1910, S.N. Bernstein posed a problem
that became known as Bernstein’s approximation problem. When
are the polynomials dense in the weighted space generated by W?
That is, when is it true that for every continuous f : R — R with

lim (fW)(x) =0,

|z|—o0
there exist a sequence of polynomials {P,} >, with
Jim [ (f = Po) Wl o) = 07

This problem was resolved independently by Pollard, Mergelyan and
Achieser in the 1950’s.

For example [12, p. 153] Mergelyan showed that there is a positive
answer to Bernstein’s problem iff

1
/ —ogQ (t)dt = 00,
oo L2

where

: [P (t) W (t)] }
Q(z) =su P (z)|: P a polynomial and sup —~2t—+—- <15.
(2) p{l ()] poly Sup — 7 <

If W <1 and is even, and In 1/W (e”) is even and convex, a simpler
necessary and sufficient condition for density of the polynomials is

(12, p. 170]
/°° Inl/W (z)

52 dr = 0.

In particular, for
Wa () = exp (= [z]%), (1)
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the polynomials are dense iff a > 1.

In the 1950’s the search began for a quantitative form of Bernstein’s
Theorem. The first efforts in this direction were due to Dzrbasjan.
In the 1960’s and 1970’s, Freud and Nevai made major strides in this
topic [19], but efforts continue to this day, with many researchers
involved. One obvious question was whether there are analogues
of classical theorems of Jackson and Bernstein, dating back to the
early 20th century, for the unweighted case. The latter independently
proved that

inf _|f = Pllrwr1y <

deg(P)<n Hf,HLoo[71,1]7

=1Q

with C' independent of f and n, and the inf being over (algebraic)
polynomials of degree at most n. The rate is best possible amongst
absolutely continuous functions f on [—1, 1] whose derivative is
bounded. Jackson also obtained general results involving moduli of
continuity while Bernstein obtained tight forward and converse theo-
rems for trigonometric polynomials. For ordinary polynomials, many
of the problems were only resolved in the 1980’s [5], [8].
For the weights W,,, where o > 1, it is known that if 1 < p < oo,

inf || (f = P)Walr,@ < Cn | f Wallnm,  (2)

deg(P)<n

with C' independent of f and n [8, p. 185, (11.3.5)], [17, p. 81,
(4.1.5a)]. Again the rate is best possible for the class of absolutely
continuous functions f with || f'W,| 1, @) finite. Freud proved these
for a > 2, and later E. Levin and the author provided the necessary
technical estimates to extend this to all « > 1. More general Jackson
type theorems involving weighted moduli of continuity for various
classes of weights were proved in [4], [6], [8], [9], [15], [17].
One particularly interesting case is a = 1, namely W (z) =

exp (— |x]). For this weight Bernstein’s approximation problem has
a positive solution, that is, the polynomials are dense. However, (2)
suggests that there may not be an analogue of a Jackson theorem,
because n~ 1+ has limit 1. As a contra-indication, a result of Freud,
Giroux and Rahman [10, p. 360] for L; suggests that possibly (2)
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is true with n=1*a replaced by @. They used the modulus of
continuity

o0

o (e = s [ TG (@4 B — (W) ()] e+ | 1w

|h|<e J —o0 -

and proved that

inf || (f = P) Whl|z, )

deg(P)<n

<0l (fip) + [ mie ol @

Here C' is independent of f and n. Ditzian, the author, Nevai and
Totik later extended this result [7] to a characterization in L;. Only
recently has it been possible to establish the analogous results in L,,
p > 1[16].

One of the conclusions of this paper is that there is no Jackson
type theorem like (2) for the weight W;. More generally we answer
the question: which weights admit a Jackson type theorem, of the
form (2), with {n=**/}> replaced by some sequence {n, }»-, with
limit 07 We give our characterization in the following theorem:

Theorem 1.1 Let W : R — (0,00) be continuous. The following
are equivalent:

(a) There exists a sequence {n,}.—, of positive numbers with limit 0
and with the following property. For each 1 < p < oo, and for all
absolutely continuous f with ||f'W ||, ) finite, we have

inf |[(f = P)Wl,® <nlfWle,®, n=21 (4

deg(P)<n
(b) Both
lim W (z) / wWt=0 (5)
r—00 0

-1 o
lim (I[Blir]l W) / W =0 (6)

with analogous limits as © — —oo.

and
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Corollary 1.2 Let W : R — (0,00) be continuous, with W = =9,
where Q (z) is differentiable for large |x|, and

lim Q' (z) =00 and lim Q' (z) = —oc. (7)
Then there exists a sequence {n,} ~, of positive numbers with limit

0 such that for each 1 < p < oo, and for all absolutely continuous f
with || f'W||L,w®) finite, we have (4).

Corollary 1.3 Let W : R — (0,00) be continuous, with W = =9,
where Q (x) is differentiable for large |z|, and Q' () is bounded for
large |x|. Then for both p = 1 and p = oo, there does not exist a
sequence {n,} =, of positive numbers with limit O satisfying (4) for
all absolutely continuous f with || f'W ||, ) finite.

Remarks

(a) The first condition (5) is necessary and sufficient for an L., Jack-
son theorem, while the second (6) is necessary and sufficient for an
L, Jackson theorem.

(b) For the case where @ is convex, and p < oo, Corollary 1.2 was
proved in [11]. It was used to relate asymptotic behavior of Sobolev
and ordinary orthogonal polynomials. Our Corollary 1.2 allows one
to relax the condition of convexity in Theorem 1.3 in [11].

(c) Of course {n,} -, may decay arbitrarily slowly to 0, though they
are independent of p. The proof of Theorem 1.1 also shows that (5)
and (6) are necessary even if we allow a different sequence {7, } -,
for each different p.

(d) It may be possible that there is a modified Jackson theorem valid
whenever the polynomials are dense in the relevant weighted space.
The form we believe likely is

inf || (f = P)Wlle,@ < Wz, + W L,(212¢,)

deg(P)<n

where {¢,}7, is an increasing sequence of positive numbers with
limit oo, independent of the particular function f. However, it cannot
be established by the methods we use here.



(e) An equivalent way to state Theorem 1.1 is as a Jackson-Favard
inequality

(= PY Wiy < meinf 7= P) Wl o

An obvious question is the independence of the conditions (5) and
(6). Does either imply the other? In fact they are independent.
Moreover, we shall exhibit weights satisfying one but not the other,
and also admitting an L; Jackson theorem but not an L., Jack-
son theorem (or conversely). This is a highly unusual occurrence in
weighted approximation — in fact the first occurrence of this phe-
nomenon known to this author. Density of polynomials, and the
degree of approximation is almost invariably the same for any L,
space (suitably weighted of course). We prove:

Theorem 1.4 (a) There exists W : R — (0,00) with
1< W (x)/exp (—2?) <2(1+ |z]), z € R, (8)

admitting an L., Jackson theorem , but not an Ly Jackson theorem.
That is, for p = oo, there exist {n, } - with limit 0 at oo satisfying
(4), but there does not exist such a sequence for p = 1.

(b) There exists W : R — (0, 00) with

1> W (z)/exp (—2?) >2/(1+]z|), r € R, 9)

admitting an Ly Jackson theorem, but not an L., Jackson theorem.
That is, for p = 1, there exist {n, } -, with limit 0 at oo satisfying
(4), but there does not exist such a sequence for p = co.

We note that the weights in Theorem 1.4 are equal to the Hermite
weight W5 (z) = exp (—x?) “most” of the time, with spikes upwards
or downwards in small intervals. The weights we construct are not
decreasing in (0,00), though they can be made infinitely differen-
tiable. We expect that with more work one can construct decreasing
W in (0, c0) still satisfying the conclusions of Theorem 1.4.

This paper is organised as follows: we prove restricted range in-
equalities in the next section, and an estimate for the “tails”
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| fWL,(e/>r in Section 3. In Section 4, we prove Theorem 1.1
and Corollaries 1.2 and 1.3. In Section 5, we prove Theorem 1.4.
Throughout C, Cy,Cy, ... denote constants independent of n and x
and polynomials P of degree < n. The same symbol may denote
different constants in different occurrences.

2 Restricted range inequalities

Restricted range (or infinite-finite range) inequalities involve bound-
ing the norm of a weighted polynomial over the whole real line in
terms of the norm over a smaller interval depending only on the de-
gree of the polynomial. They play a major role in analysis of weighted
polynomials, orthogonal polynomials, and weighted potential theory.
A key example is the Mhaskar-Saff identity [18]

[PWallLw®) = 1PWall 1o (—cunt/o coant/ays

valid for all polynomials of degree < n and o > 0. The constant C,
is “smallest possible" and depends only on «. For further orientation
on this topic see [13], [17], [21]. Unfortunately, although there are
restricted range inequalities for very general weights, none of them
are applicable to the weights we use here. In this section we prove
two inequalities, that we may apply under the forward and converse
hypotheses of Theorem 1.1:

Theorem 2.1 Let W : R — (0,00) be continuous and assume that
both

lim W (z W 1— (10)

T— 00

and
lim (rgurll W) / W =0 (11)

with analogous limits as © — —oo. Then there exists an increasing
sequence of positive numbers {q,} -, such that

lim & =0, (12)

n—oo N
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and such that for 1 < p < oo,n > 1, and all polynomials P of
degree < n,

IPWIILy(tefzq0) /1 PW | L,@) < 27C, (13)
where C1 is independent of n,p, P.

Theorem 2.2 Let W : R — (0,00) be continuous, 1 < p < oo, and
assume that for each n > 0,

"W () || 1,m) < oo. (14)

Then there exists an increasing sequence of positive numbers {&,,}.-_,
such that for n > 1 and all polynomials P of degree < n,

[PWLy(eize,) < CL27" [1PW ]|z, (-1,0), (15)
where C is independent of n,p, P.

We shall prove one lemma, then Theorem 2.1, and then prove the
far easier Theorem 2.2.

Lemma 2.3 Let W : R — (0,00) be continuous.

(a) Assume that ¢ : [0,00) — (0,00) is a decreasing function with
limit O at co such that for x > 0,

W (x) /093 W <6(x). (16)

For large enough n, let ¢ = £ (n) denote the smallest integer satisfying

l
> 4n. 17
5O (17)
Then for large enough n,
sup "W (z) <6 (O)*  sup "W (z). (18)
2(n) w€[54(n).0(n)]



Moreover,
14
lim ) = 0. (19)
n—oo n
(b) In addition, assume that ¢ : [0,00) — (0,00) is a decreasing

function, such that for x > 0,
-1 00
(1[1611111 W) / W <e(x). (20)

Then for x > 2u > 0,
40 (0) e (0)

12

W)W (z) <

(21)

Proof
(a) Note first that (19) follows easily from the fact that § has limit 0
at 0co. Fix n and let £ = ¢ (n). If 2 > ¢,

z .Tn+1 /¢ n+1 xn—l—l
/ thdt = 1—(— > —
iy n+1 2x 2(n+1)
Then

oW (z) < 20D ( / ’ t"dt) W (2)

T
3¢

2(n+1)

< sup t"W (t) | W (x) [j Wt(t)dt

te[%é,x]

4n

< —0(0) sup t"W(t),
¢ te[%f,oo)

by (16). Using our choice (17) of ¢, we continue this as
sup "W (z) < 8 (0)Y? sup "W (t).

xz€[{,00) té[%ﬁ,oo)
If n is so large that § (¢) < 1, this last inequality implies that t"W (t)

cannot attain its sup in [1¢, 00) in [(,00). Hence

sup "W (z) <8 (O)Y* sup "W (t)

z€[l,00) t€[20,00,0)



so we have (18).
(b) By Cauchy-Schwarz, for x > 0,

T T 1/2 T 1/2
(L) ()
2 x/2 z/2

Then
6 () 6 () 6(x) [*
Wi = Jo W= = fzf/z w-t = (z/2)" /a:/z v
" » §5(x)e () oW 46 (2)e (u)
W= (u) W(z) < (x/2)2 fuoo W S 72 ’
since u < x/2. O

We note that (18) implies for each n > 0,

lim "W (z) =0

r—00

and hence for every polynomial P,

lim P (x) W (z) = 0.

T— 00

Proof of Theorem 2.1
Our approach is similar to that in [14]. Let P be a polynomial of
degree k < n, say

k
P(2) :cH(z—xj).
j=1
We assume ¢ # 0, and split the zeros into “small" and “large" zeros:
we assume that
|z <£@2n),  J <4
|z;| > € (2n), J >

For |u| < $0(2n),z > ((2n) and i < j <k,

1+ x/ |z x x
S Tl ] = (“mm) =T

ZU—.I'j

U—.fL'j
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Then for such x, u

' P (z)
P (u)

: (H |uixxj|> <4€<§n>>k_i'

We now apply a famous lemma of Cartan:

%

IT -

j=1

> ¢’

for u outside a set of linear measure at most 4ee [1, p. 175], [3, p. 350].
£(2n)

100

P (z)

P (u)

we obtain

< (i) < (i)

for > ¢ (2n), u € [0,30(2n)] \S, where

Choosing ¢ =

4e 1
< — - .
meas (§) < 1006(277,) < 85(271)

Here and in the sequel, meas denotes linear Lebesgue measure. Then
for such u,

/4 T P@W @) ds

00£(2n)

< ( 200 )np|P(u)|p /4 T W () de (22)

(2n) 004(2n)

Next

/ WP (x) dz
4

00£(2n)

o

p
< < sup 22" W (ZL‘)) (400¢ (Zn))_np+2p/ x~#dy
+>400¢(2n) 4

00£(2n)
p

< |s@@n)’*  sup W (x)| (400¢(2n)) """
wG[%Z(Zn),ZQn)]
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p

< |s@e@n)*  sup W (x)| 4007 te(2n)"PT
we[10(2n),0(2n))

by Lemma 2.3(a). Moreover, [0,3¢(2n)]\S has measure at least
£ (2n), so we may choose u in this set such that

w) P W (u) ’
Pl = s ([0, 20 @) \S) /[oywm]\S‘PW‘

8W (u)~* »
<t P

Finally, from Lemma 2.3(b), for z € [3((2n),¢(2n)], and u €
0,30 (2n)]\S,
160 (0) € (0)

w1 (u) w ($) < / (2n)2

Putting these last 3 estimates in (22) (and dropping a factor of
5 (0(2n)P2 0 (n) ™ = 0(1)) gives

/ |P(x) W ()| das// |PW|P < 27"¢ (2n) " CP,
400¢(2n) R

where C' is independent of n,p, P. A similar inequality holds over
(—o0, —400¢ (2n)) and so, taking pth roots,

| PW | 1, (1> a00e2n)) /| PW || £,y < 27"Ch,

with C] independent of n,p, P. Letting p — oo gives the result for
p = oo also. Thus we may take

qn = 4004 (2n)

in Theorem 2.1. Note that (12) follows from (19) in Lemma 2.3.
Although this choice does not guarantee monotonicity of {g, } - ,, we
can easily modify the sequence to be monotone increasing. O
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Proof of Theorem 2.2
Write

P(z) = Z a;zd.
=0

Here by Bernstein’s inequality [5, Cor. 1.2, p. 98], followed by Nikol-
skii’s inequality [5, Thm. 2.6, p. 102],

PU) (0)
J!

n’ 1/
T (@+ D7) Pl

le
0] = ' \ < Pl

IN

IN

n‘] —
F€n2||W 1||Loo[fl,1} ||PW||LP[7171]'

Then for A > n,
[PW |z, (121>

_ —~n
< e IW o foaall Wz D S 10/ W (@) otz
i=0
9 1 9 n n2j72n
< e [|W M oo cr g IPW Ly ooy 127 W (2) [y (a0 D 7

J=0

< CNPW | =1l W (@) || 1, a1=0)

where C' depends only on W (not on n,p, P). The finiteness (14) of
the norms for all monomials, shows that for large enough A,

Cllz* W () |1, a1z < 27

We may choose ¢, to be this A. By an obvious process, we may also
ensure that {,} ~, is increasing. O

3 A Bound for Tails

The result of this section is:
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Theorem 3.1 Assume that W : R — (0, 00) is continuous.

(a) Assume W satisfies (5) and (6), with analogous limits at —oo.
Then there exists a decreasing positive function n : [0,00) — (0, 00)
with limit 0 at oo such that for 1 < p < oo and X\ > 0,

1V L@y =y < 1N Wk, @) (23)

for all absolutely continuous functions f : R — R for which f(0) =0
and the right-hand side is finite.

(b) Conversely assume that (23) holds for p =1 and for p = oo, for
large enough X. Then the limits (5) and (6) in Theorem 1.1 are valid,
with analogous limits at —oo.

Note that (5) is alone necessary and sufficient for the conclusion
of Theorem 3.1 to hold for p = oo, and (6) alone is necessary and
sufficient for the conclusion to hold for p = 1.

We shall prove Theorem 3.1(a) for p = oo, then p = 1, and then use
interpolation to do the case 1 < p < co. The converse will be proved
at the end of this section. The ideas of proof of Theorem 3.1(a) go
back at least to G. Freud, and are elegantly presented, in the setting
of Freud weights, in Mhaskar’s monograph [17]. They are similar to
the ideas of proof of Hardy’s inequality. Note that there is no simple
analogue of this result for p < 1.

Proof of Theorem 3.1(a) for p = co
For 2 > 0,

(fW)(z) =W (x)/ (f'W) () W (t) dt. (24)
0
Hence for A > 0,
up V] (@) < W leoosup W () [ W (o).
>\ >\ 0
A similar inequality holds for z < —A. Now apply the limit (5).0

Proof of Theorem 3.1(a) for p =1
For A > 0,

/:OlfWI(a:)dx:/:o‘(/OAjL/:) (FW) &) w (t)dt‘W(x)d;p
14



§/0A|f’W|(t)dt (%&nw> 1/OOW(x)dx

+/A W (¢ (/ W (a d:zc)dt

< (/0A|f’W\(t)dt) (I[B{i/\r}lW) /A W () do

+< /A OO]f’W\(t)dt) sy {Wl ) ( /t OOW(x)dxﬂ. (25)

A similar inequality holds over (—oo, —A). Now apply the limit (6). O
Proof of Theorem 3.1(a) for 1 < p < o
The above implies that for p = 1 and p = oo, there exists a decreasing
positive function 7 : [0, 00) — (0, c0) with limit 0 at co such that for
A >0,

LWLy eany <0 W) LWz, @)

for all absolutely continuous f with f (0) = 0 and for which the norm
on the right-hand side is finite. Let us fix A > 0 and set g = f’, and
define the linear operator

L{g) () = Xy (@) / L

where xg\(_»  (¥) is the characteristic function of R\ [-A, A]. We see
that we have proved

1L 9] WllL,@) < 1) l9WllL,m

for p =1, 00 and for all measurable g with ¢V € L, (R). The Riesz-
Thorin Theorem [2, p. 196] then shows this is true for all 1 < p < co.
Substituting back g = f’ gives the result as stated. O
Proof of Theorem 3.1(b): the case p = 0o

Next, let us fix A > 0 and define

0, x <0,
fl)y=38 JgW zel0)],
W e s

15



Then f/ = W=t in (0,)\) and f/ = 0 in R\[0,\]. We see from (23)
that

D) =0 O W ey > (FIV) ( / WL

So we obtain (5). The analogous limit at —oo is similar. O
Proof of Theorem 3.1(b): the case p =1

First note that if we take f to be an absolutely continuous function
with bounded derivative that is 0 at 0 and equal to 1 outside [—1, 1],
our hypothesis (23) gives

Jim [[W[zy @ -an) = 0. (26)
Next, let us fix A > 0, and choose ty € [0, \] such that

W (ty) = 1&)11}\11 W.

For large enough A, (26) shows that ¢y > 0. Choose o € (0,%) and
define
T <1ly— «,
f W_l, WS [to—a,to],
f —a W_l, T > 1.
a,tg) and f' = 0in R\ [to — «, ty]. We see

f () =

Q|>—AQ|)—!O

Then f' = IW'in (to —
from (23) that

n(A) =0 W@ = 1TWlzi (e

Moreover, as f’ > 0, we see that

[es) to 1
Wl = [ | 2w >dt] W (2) da
A to—«

~1
> ( max W> / W (x
[to ato
1 0o
n(A) > ( max W> / W (x)dz
[to—a,to] A

16
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Since a may be made arbitrarily small and W is continuous, we
obtain

n (V) ZW(tO)_l/:OW(x)dx_ (man)_l/ W (a

So we obtain (6). The analogous limit at —oo is similar. O

4 Proof of Theorem 1.1 and its Corol-
laries

We shall prove the sufficiency part of Theorem 1.1 after two lem-
mas. Throughout this section, we use special notation. We shall use
integers n > 4 and 1 < m < 7, as well as parameters

1

where {¢,, } -, is as in Theorem 2.1. We denote by p (m) an increasing
function that depends on m and W, while o (\) denotes a function
increasing in A\. These functions change in different occurrences. The
main feature is that o is independent of m, n, p and functions f, while
p is independent of A, p and functions f. At the end, we choose m to
grow slowly enough as a function of n, and then A\ — oo sufficiently
slowly.

Lemma 4.1 Let W : R — (0,00) be continuous and satisfy (5), (6)
with analogous limits at —

(a) There is an increasing function o : [0,00) — [0,00) with the
following properties: let m > 1 and X > 1. For 1 < p < oo and all
absolutely continuous f with f'W € L, (R), there exists a polynomial
R,, of degree < m such that

1(F = B Wiy icoman < “0 1 #W (28)

(b) Moreover there is an increasing function p : Z, — (0,00) de-
pending only on W such that

IR W | ,@) + [ RW | Loy < p (m) (| /W |2, @) + ||f'W||Lp(R)() : |
29
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Proof
(a) By the classical form of Jackson’s Theorem [5, (6.4), Theorem 6.2,
p. 219, translated from [—1, 1] to [=\, A], there exists R,, of degree
< m with

TA
m+1

|f = Rmllz,—2x20 < 1Nl 2, =222 - (30)

Then
| (f = Bon) WlLy—2x2x
T 1
< E||WHL0°[—2A,2A]\|W||Loo[—2x,m||f'WHLp(R)-

So we can take

1
o ()= 7T>\HWHLOO[—2A,2A}HwﬂLw[—%m]-

(b) By the restricted range inequalities in Theorem 2.1, for some C
independent of f,p, m,

IR W |z, ) + ([ R W | oo ()
S C (HRmWHLP[_QmJIm} + ||RmW||Loo[_QM7Qm])
S C“RmHLoo[_Qmﬂm] (HWHLp(R) + ||WHL<X>(R)) .

Here simple estimation shows that
Wle,m < @+ IWwm) L+ W) -
So for some C' independent of f,p, m,
[BnW |z, @) + 1B W@ < ClllBmllLal-gman)-  (31)

Recall the Chebyshev inequality [5, Proposition 2.3, p. 101], valid for
polynomials P of degree < m:

[P ()| <D ()Pl vy, 2] > 1.

Here T,, is the classical Chebyshev polynomial of the first kind. By
dilating this, and using the bound

T (2)] < 22", |2l > 1,

18



we obtain

qm\™
||Rm||Loo[_Q’m»Qm] S (T) ||Rm||Loo[_2>‘72>‘]'

Using Nikolskii inequalities [5, Theorem 2.6, p. 102], we continue this
as

/p
gn\™ ((p+1)m?\’
< (%) (P50) IRl

TA
< qu;‘mQ/p (HfHLp[2,\,2,\] + EHf”|Lp[2,\,2,\]> ,

by the fact that A > 1 and by (30). Using our bound (27) on A, we
continue this as

||Rm||Loo[_Qm7Qm] S eqfnlm2||W_1||LOO[_QW7QM}
X (1 +7gm) (/W |z —2n2n + 1F Wl —2n2) -

Combining this and (31) gives the result, with
10 (m) = Cleq?nlm2HWi1HLoo[_QTQO} (1 + WQM) ° D

Next we construct polynomials that approximate the characteristic
function of [—A, \] in a suitable sense:

Lemma 4.2 There exists C' > 0 such that for n > 8, and for 1 <
A< %qn, there are nonnegative polynomials V,, of degree < 3n/4 such
that

(a)

n
n\’
0<V,(x) <C, lz| € [, 2)]; (33)

1-V,(z)|<C T € [—\A]; (32)

0 <V, (x)
<c <%>2exp <— Lg;n [ QA@ 1/2) e hal. (34)
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Here C' is independent of n, A and x.
(b) Moreover, for 1 < p < o,

dn
11— Vallzy-an < Clgv (35)
and a
||Vn||LP[7‘]nyfITJ\[72/\’2/\] S Clﬁn’ (36)
with C} independent of n, A, and p.
Proof
(a) Let us fix n and set
A 1
r=—e |0,=|.
4n { 2}
Step 1 Approximate via Jackson’s Theorem
Define a piecewise linear function h,, : [—1,1] — [0, 1] by
1, |z <7
h (@) =9 2= B r <o) <o2r;
0, 2r < |z| < 1.

Then h,, is continuous with piecewise constant derivative. By Jack-
son’s Theorem [5, (6.4), p. 219], there is a polynomial U, of degree
<3 such that

o= Ualltwicnn < g B iy = 2. (37
Step 2 Use fast decreasing polynomials to damp near [—1, 1]
Nevai and Totik [20, Corollary 2, p. 117] showed that there exist

polynomials P, of degree < n/8 such that for = € [-1,1],

[P, (2) — sign (2)] < Cexp (— E |x|]1/2> |

The constant C' is independent of n and z. For a € [0, 1], we set

Spa () = % (1+Pn (f;j))
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Since r € [~1,1] = =% € [~1,1], and since (except at x = a),
1 T —a
=—11 )
X(a,oo) (IL‘) 9 < + sign (1—|—a>)

Tr —a

1/2
1—|—a] )

< Cexp <— [126 |z — a|] 1/2) :

we have

For a € [-1,0), we set
S () = 1 = S,y (—),
and see that it admits a similar estimate. Now we set

Ry (z) = Sp—2r (z) (1 = Spor (1)),

a polynomial of degree < n/2, and use
X[—Qr,Qr] (l’) = X(—Qr,oo) (:C) (1 - X(2r,oo) (l'))
(except at x = —2r) to deduce that for z € [-1,1],

‘Rn (x) — X[~2r,2r] (I)| < Cexp (_ [% o — 27‘|] 1/2)

1/2
+ Cexp (— [% |z + 27“]] )
n 1/2
< Cexp (— [E lz| — 27” ) . (39

Step 3 Combine U,, and R,
We set



a nonnegative polynomial of degree at most %”. Note here that

An Gn
— < = =0(1).
nA _— n o(1)

From (37) and (38), we see that for x € [—=\, A] = [—¢.7, ¢u7],

N O 2N

o P 16q, ’

with C independent of n, x, \. Then (32) follows. It is easy to deduce
(33). Next in [2), ¢,], (37) and (38) give

Cog 2 n 1/2
< < L — — )
0<V,(x) < < - ) exp [16% || 2>\|]

(b) The first inequality (35) is immediate from (32) and the fact that
AP < 1. For the second, we use (34): if p < o0,

Cot \* [* p*n 1/2
||Vn||ip[2)\7qn] < ( Y ) /2)\ exXp | — 16qn |Z)3 — 2/\| dx

Coqn \* 16¢, [
< ( 7”(:;]\ ) q /0 exp (—31/2) ds.

p*n

11—V, (x)] <4

Since p > 1 and ¢, is independent of p and is o(n), we obtain for
p < oo and some (] independent of n, p,

A <O<@Y<C@
n||Lp[2A,qn] = Y1 n\ >~ n

Letting p — oo gives the result for p = oo also. a

Proof of the sufficiency part of Theorem 1.1
We may assume that f(0) = 0. (If not, replace f by f — f(0) and
absorb the constant f (0) into the approximating polynomial.) We
choose n > 8 and 1 < m < n/4, and let \ satisfy 1 < A < %qm. Let
R,, and V,, denote the polynomials of Lemma 4.1 and 4.2 respectively,
and let

P,=R,V,.
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Then P, is a polynomial of degree < n, and
nf (= PYWle,m < (= o) Wiz, @

deg(P)
S | (f = Pn) WLy gn.gn]
+ Wz, @\—goan) + [PaW L@\ (—g0.00)
<= Po) WLy (= gungal
+ W L@y + C27"[[PaW | L= gn.gn)» (39)

by Theorem 2.1 and as ¢, > A. Next,

1(f = P) Wi canan < 1= Pa) WllLan + 1 WL, @y -an)
+ 1B W 2, (= gnsgn\=AN)

=T+ Ty + Ts. (40)
Firstly
T < (1 (f = Bon) Wiz poan + (1B (1= Vo) Wil -a
< (f = Bo) Wlizpoan + 1 RaW | L -ax 11 = Vallz,-an
< T w4 ) (Wl
Wy ) 11 = Vallz,oan
< T8 s 0y + Cop () W 0, (1)

by Lemmas 4.1, 4.2(b) and Theorem 3.1. Here C is independent of
fym,n, p, \. Since f(0) =0, Theorem 3.1 gives

1V L@y < 0 (0) [ £ W] L)

The crucial thing in (41) is that o and p are independent of f,n, p.
Next, if n is as in Theorem 3.1,

T < M) [F WLy e (42)

Of course this estimate also applies to the middle term in the right-
hand side of (39). Next,

Ts < |PaW ] p,0<iz1<2n) + | PaW Ly @r<ial<qn) =: T31 + T32.
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Here

Ty < [[RpW |1, 0<lei<2n || Vall Lo (r<fe<2n)
< C(1(Bm = ) Wllz,ocpei<an + [ WL, (r<lai<2x))

A
<c (“( W + 7 () ||f'WHLp(R>) | (43)

m
by Lemmas 4.1, 4.2 and Theorem 3.1. Next,

Ty < [[RnW || Lo @rglz1<am | Vall Ly 22< 2/ <a0)
n
<p(m) (1fWllL,®) Clg-

by Lemmas 4.1, 4.2 and another application of Theorem 3.1. Com-
bining this and the estimates in (40) to (43) gives for n > 8,

|| (f - P’Vl) W“Lp[_quyqu]

< Wl { T o 2 g}

m

Then using this estimate and Theorem 3.1, we deduce that

(A Gn
P < W€ { 2 4 p ) 24 1],

Combining this estimate, (39) and (44) gives

inf || (f = P)WllL,®

deg(P)<n

A n _
< 1 W€ { 24 p(m) 2 ) + 2

with C independent of n, m, A, p, 0. The functions ¢ and p obey the
conventions listed at the beginning of this section, and are indepen-
dent of f,n,m,p, as is the constant C. For a given large enough
n > 8, we choose m = m (n) to be the largest integer < n/2 such

that 12
Qn Gn

p(m) &< (T) 77
n n
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Since (by Theorem 2.1) ¢,/n — 0 as n — oo, while p is increasing
and finite valued, necessarily m = m (n) approaches oo as n — 0.
Next, for the given m = m (n), we choose the largest A = A (n) < m

such that
o(A) <vVm

As o is finite valued, necessarily A(n) — oo, so n(A(n)) — 0,
n — oo. Then for some sequence {7, } >, with limit 0, and which is
independent of f,p,
inf —P)W < "W :
deadl 1 (f = P)WlL,® < 0.l WllL,m
For the remaining finitely many n, say for n < ny, we use Theorem 3.1
to deduce that
ot (= P)YWlr,@ < [fWlz,e <0 0) [ Wik,
eg(P)<n
We choose n,, =71 (0) for n < n;. O
Proof of the necessity part of Theorem 1.1
We assume that (4) is true for every absolutely continuous f with
| f'W| L, finite, where p = 1 or p = oco. In particular, if we choose
f to be 0 outside [—1, 1], and not a polynomial in [—1, 1], we obtain
for some sequence {P,} , of polynomials with degrees tending to
Oo7
||PnW||Lp(|:p\21) — 0,77, — OQ.

As P, behaves for large |z| like its leading term, this forces

sg[l) 2" W (2) || 1,®) < oo.

Then the hypothesis (14) of Theorem 2.2 is fulfilled, and consequently
there exist {&,} -, such that (15) holds for all polynomials P, of
degree < mn. Let us now consider an absolutely continuous f with
f(0) =0 and ||f'W||L,® finite. Our hypothesis asserts that there
are for large n polynomials {P,}>°  of degree < n with

I (f = P) Wll,® < 0l Wlle,m
= [[fWlz,eize) < Ml Wlle,@ + 1P| Ly(e>e,.)-
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oo
n=1?

Here by Theorem 2.2, and then our hypothesis on {P,}

| PaW | L2126,y < C27"[|PaW ||y -1,1]
< C27" (W llyi—1.1 + mallf WL, m®)) -

/Ox (1) dt

1
< Wil / ()] dt

Here if p =1,

1
W eyion < W oo / da

1
< I Dt I Lo [ 1079 0
A similar inequality holds over [—1,0] and hence

1 W eai=10) < 20W | Loe it ) IV oo =y 1 W 2 -1,

The case p = oo is easier. Combining all the above inequalities gives

WLy 2z < IS WL, @),

where {77}>° | has limit 0 and is independent of f. The same in-
equality then holds for the L, norm of fW over |z| > A, where
A€ [ﬁn, fnﬂ}. If A <&, we can just use Theorem 3.1 and the result
for A > &,. It follows that there is a positive decreasing function 7
with limit 0 at oo such that (23) holds for absolutely continuous f
with f(0) = 0 and || f'W/||,®) finite. Then Theorem 3.1 gives the
limits (5) and (6). O
Proof of Corollary 1.2

We must prove the limits (5) and (6). We do the second first. Let
A > 0. Choose R > 0 such that

u>R=Q (u) > A.
Then for z > R and ¢ € [z, 00),
W (x)_l W (t) = Q@) —Q()

_ Q@ Ot=a) < —Alt-a)

Y
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where ( lies between ¢ and x. Then for v > R and = € [R, u]

o0 (0.0 1
1 x)/ W (t) dtg/ e A=)t < T

For x € [0, R], this last inequality gives

o [ Tw g < w () T

Hence for such u,
~1
man / W < max<{ | min W W(u)’l .
[0,u] [0,R] A A
Since our hypothesis forces () to have limit co at oo, we obtain

lim sup (IBIH]I W) / W <

As A may be arbitrarily large, we have (6). Next, if x > R, we
similarly see that

/W tydt <W (z / Wt )dt+/ e~ At qt
R

< W(x)/Rwl (t)dt + =

A
Then
li -
1211_) sotip W (z W A
Again (5) follows as A > 0 is arbltrary. O

Proof of Corollary 1.3
Let us choose fixed B > 0 and R > 0 such that

Then for > R and t € [x7 00)7
W (1‘)*1 w (t) — R@)-Q(t) — —Q(Ot—2) > e_B(t_Z)7

1
> B(tfx) = —.
/ W (t) dt / e dt 3

Hence (6) fails. Similarly (5) fails. O

SO
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5 Proof of Theorem 1.4

In this section, we let
Ws (z) = exp (—2?), r eR,
denote the Hermite weight. We choose intervals
-y i+agl,  j=2

where «; € (0,1), and decays rapidly to 0 as j — co. We set
W) =Wa(z), weR\{JU-auj+ta).  (45)
=2

For Theorem 1.4(a), where we want an L, Jackson theorem, but not
an L, Jackson theorem, we set

W) =W20)/5,  J=2 (46)

For Theorem 1.4 (b), we set
W) =W20)j,  J=2 (47)

In both cases we then define W so that W/Wj is linear in [j — «;, j]
and in [j, j + «;]. This ensures that W is continuous in R. (Of course

we could ensure it is C* by smoothing at j and j+«;.) It also implies
under (46) that,

L2 W@ Wa@) 2 g TeR (15)
and under (47),
1< W (z)/Wy(z) <1+ x|, r€R. (49)

In proving the Jackson theorem for W in the relevant L,, we shall
need a restricted range inequality. This does not follow from Theorem
2.1, since at least one of the conditions there is not fulfilled. Using
classical results for the Hermite weight, we prove:
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Lemma 5.1 Let W be as above, satisfying either (48) or (49). Let
1 < p < oo. Then there exist C; > 0 and Cy > 0 such that forn > 1
and polynomials P of degree < n,

IPWIlL, (rzavm) /IPW @) < Cre™". (50)
Proof
For both cases, we have for |z| > 2,
1
<WwW W- <31 o1
T e = (x) /Wy () <31+ 2], (51)

so for all n,
HPWHLP(\;E\EQ\/E) < 2”P (x) (1 + :L“) W, (:13) ||Lp(‘x|22\/ﬁ)’

Since P (x) (14 x) is of degree < n + 1, we obtain from classical
inequalities [18], [21, Thm. VIL.5.1, p. 334], that we can continue this
as

< C’lefnCQHP (z) (1 +2) Wa (2) HLP<|$|ng)

W2 (ZE)

—nC
< Chne 2”P (23) 1+ |.17| ||Lp(\x|§%\/r+l)

< CeP|P @)W (@) Il (0123 vir):

by (51). Then (50) follows. O
Next, we show that the weights W defined above satisfy exactly
one of the limit relations in Theorem 1.1:

Lemma 5.2 (a) Let W satisfy (45), (46) and (48). If we choose the
sequence {a;} to decay sufficently rapidly to 0, then the limit (5) in
Theorem 1.1 is true, while the limit (6) fails.

(b) Let W satisfy (45), (47) and (49). If we choose the sequence {c;}
to decay sufficently rapidly to 0, then the limit (6) in Theorem 1.1 is
true, while the limit (5) fails.
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Proof
We choose the {«; }jil so small that for large enough = > 0,

1 x
1 e 0
§§/ W// Wy < 2.

For example, this will be true if

and

<2+ 2w+, j>1

Indeed, using our bound (51), this implies

[ e 1»—2/](1] Wi

Then (52) follows easily. Next,

]+a]
/|W W2|<Z/ W — W,

m gz VI
§Z6OCJ(1+]+O£])W2(]—1)
j>x
<22 Wy (j41) <2 I/ W,
j>x

so (53) follows.
( ) Now from (48) and (52) for large enough =,

/W < W, (2 /W < 2W, (2 /W2.



It is easily checked that the last right-hand side approaches 0 (or
follows from the well known fact that the Hermite weight admits a
Jackson Theorem in all L,, together with Theorem 1.1). So (5) is
true. Since W = Ws in (—o0,0), the limit at —oco is immediate. On
the other hand, by (46) and (53), for large enough j,

1(j>/j°°WZJW21<j>1/OOW2

/ Wy (s 23d5>—

1
8 16’

for j large enough. So (6) fails.
(b) Now from (49) and (53) for large enough z,

(I[Iolil]lW) / W< Wyt )/ W < 2w, 't (:c)/ Wyt

Again it is easily checked that the last right-hand side approaches 0.
So (6) is true. On the other hand by (47) and (52), for large enough

Js
/ W s)2s ds
1
= (1= ().
So (5) fails. O

Proof of Theorem 1.4(a)
Now W of (45), (46), (48) admits the restricted range inequality
Lemma 5.1. Also the limit (5) is true, together with its analogue
at —oo. Then the exact proof that we used before in the proof of
Theorem 1.1(a) gives an L, Jackson theorem. Note that we can take
qn = 24/1, 80 q, = o (n).

On the other hand, we have shown in Lemma 5.2 that the limit
(6) fails, and then the proof of Theorem 1.1(b) shows that there is
no L; Jackson theorem. O
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Proof of Theorem 1.4(b)
Now W of (45), (47), (49) admits the restricted range inequality
Lemma 5.1. Also the limit (6) is true, together with its analogue
at —oo. Then the exact proof that we used before in the proof of
Theorem 1.1(a) gives an L; Jackson theorem. Note again that we
can take ¢, = 2/n.

On the other hand, we have shown that the limit (5) fails, so the
proof of Theorem 1.1(b) shows that there is no L., Jackson theo-

rem.

O
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