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ABSTRACT. Let 1 < p < oo and W : R — (0,00) be continuous. Does
W admit a Jackson Theorem in L,? That is, does there exist a sequence
{nn Yoo, of positive numbers with limit 0 such that

inf -p < /
25 L= P iy W e

for all absolutely continuous f with || f'W |1, finite? We show that
such a theorem is true iff

lim ||W—1||Lq[w] HW”LP[Z,OO) =0,

r— 00
where ¢ is the conjugate parameter of p. In an earlier paper, we consid-
ered weights admitting a Jackson theorem for all 1 < p < co.
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1. INTRODUCTION

Let W : R — (0,00). Bernstein’s approximation problem addresses the
following question: when are the polynomials dense in the weighted space
generated by W7 That is, when is it true that for every continuous f : R —
R with

lim (fW)(x) =0,

|z|—o00

there exist a sequence of polynomials {P,} >, with
Tim || (f = P W )= 07

This problem was resolved independently by Pollard, Mergelyan and Achieser
in the 1950’s [6]. If W < 1, is even, and In1/W (e”) is even and convex,
a necessary and sufficient condition for density of the polynomials is [6, p.

170]
*Inl
/ il A ) /ng)dx:oo.
0 1+.%'

In particular, for W, (z) = exp (— |z|%) ,the polynomials are dense iff o > 1.
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2 D.S. LUBINSKY

In the 1950’s the search began for a quantitative form of Bernstein’s
Theorem. One obvious question is whether there are weighted analogues of
classical theorems of Jackson and Bernstein, namely

) C
B 1= P o S e

with C' independent of f and n, and the inf being over (algebraic) polyno-
mials of degree at most n. For the weights W,, where a > 1, it is known
that if 1 <p < o0,

1 inf ~-P)W, <Cn a | f'W
@t =PI Wo @< On | W ),
with C independent of f and n [5, p. 185, (11.3.5)] [11, p. 81, (4.1.5a)].
This inequality is also often formulated in Jackson-Favard form,

inf ~-P)W, <Cn s inf '~ P)W, .

W = P Wl O it (1= P) Wl )
More general Jackson type theorems involving weighted moduli of continuity
for various classes of weights were proved in [4], [5], [11].

In a recent paper [10], the author showed that the weight W7 does not ad-
mit a Jackson estimate like (1), even though the polynomials are dense in the
weighted space generated by W;. The author also characterized weights that
admit Jackson theorems in L, for all 1 < p < co. The main result there was:

Theorem 1.1

Let W : R — (0,00) be continuous. The following are equivalent:

(a) There exists a sequence {n,}.-, of positive numbers with limit 0 and
with the following property. For each 1 < p < oo, and for all absolutely
continuous f with || f'W || (r) finite, we have

@) s N = PIW @) < i | FW Iz @om > 1.
(b) Both

(3) lim W (2) / "Wz

and °

@ Jm W@ [Tw=o

with analogous limits as x — —oo.

As a corollary it was shown that if W = e~@, where Q' exists for large |z|,
then there is a Jackson theorem in L, for all 1 < p < oo, when £Q’ (z) — oo
as x — £oo and there is no Jackson theorem if Q' () is bounded for large

In this paper, we focus on just a single L, space and ask which weights
admit Jackson theorems in that space. We prove:
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Theorem 1.2

Let W : R — (0,00) be continuous. Let 1 < p < oo and %—I—% = 1. The
following are equivalent:

(a) There exists a sequence {n,}--, of positive numbers with limit 0 such
that for all absolutely continuous f with || f'W HLP(IR) finite, we have

(5) s N = PYW @)= LW 1 ),m >

(b)

(6) xli)rgo ||W||Lp[z,oo} HW_ 0,

1HLq[0,x] =

with an analogous limit as x — —oo.

Remarks

(a) Thus there is a Jackson type theorem in a specific L, space iff (6) holds.
In fact, we shall show in Section 3 that (6) is necessary and sufficient for
the existence of a decreasing function 7 : (0,00) — (0,00) with limit 0 at
o0, such that

Hf’WHLp[am) <1 (a) lfW L, (0,00)

for all absolutely continuous f with f(0) = 0. This is a "shifting" weighted
Hardy inequality.

(b) Theorem 1.2 actually implies Theorem 1.1. For the condition (6) for
p = 1 is equivalent to (4) and for p = co is equivalent to (3). Interpolation
then gives (2) for 1 < p < oo. Of course, Theorem 1.1 does not imply The-
orem 1.2.

(b) It was shown in [10] that there is a weight W admitting an L; Jackson
theorem, but not an Ly, one (and conversely). Here we show:

Theorem 1.3
Let 1 < p,r < oo with p # r. There exists W : R — (0,00) such that

1—:502 <W (2)/exp (—2?) <1+2% z€R,
and W admits an L, Jackson theorem , but not an L, Jackson theorem.
That is, there exist {n,,}-, with limit 0 at co satisfying (5) in the L, norm,
but there does not exist such a sequence satisfying (5) in the L, norm.
Theorem 1.3 shows that not only rate of decay, but also regularity, of W
is necessary for a Jackson theorem. After all, the Hermite weight exp (—1’2)
admits a Jackson theorem in L, for all 1 < p < oo, but W is close to Wa,
yet admits a Jackson theorem in L, but not L,,.
This paper is organised as follows: we prove restricted range inequalities
in the next section, and an estimate for the “tails” || fW || (jz/>») in Section
3. In Section 4, we prove Theorem 1.2. In Section 5, we prove Theorem 1.3.
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Throughout C,Cq,Cs, ... denote constants independent of n and x and
polynomials P of degree < n. The same symbol may denote different con-
stants in different occurrences. If (¢,) and (d,,) are sequences of real num-
bers, we write

cp ~ dp
if there exist C7,Cy > 0 such that
C; < Cn/dn <Cyn>1

Similar notation is used for functions. The linear measure of a set B C R is
denoted by meas (B). The set of all polynomials of degree < n is denoted
P,.

2. RESTRICTED RANGE INEQUALITIES

Restricted range (or infinite-finite range) inequalities are a crucial ingre-
dient in weighted approximation on the real line [8], [11], [12], [14]. However,
none of the standard ones cover our class of weights. The methods used to
prove the form we need, are similar to, but not the same, as in [10]. In this
section, we fix 1 < p < 0o, and let

= _1y-1
(7) W(z) = HW 1HLq[O7x] ,z € (0,00),
1,1 _
where . + 0 = 1.
Theorem 2.1
Assume that for x € [0,00),
-1
(8) HWHLP[m,oo) HW HLq[O,x} < 1/} ((17) )
where 1 is decreasing in [0,00) and

with a similar relation in (—o0,0]. There exists g, > 0,n > 1, such that
(10) gn =o0(n),n — oo,

and for n > 1, and all polynomials P of degree < n,

(11) IPW L, (2120 < CAIIPWI L () -

Here C is independent of n and P.

In the rest of this section, v is the function specified in Theorem 2.1. For
n > 1, we choose A, > 0 such that

=" W (x)HLp[An,ZA,L} — hax =" W (m)HLp[u,Qu} =: Ap.

(We show below that A,, exists).
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Lemma 2.2

(i) For n >0,
|z"W (fB)HLp[l,oo)
is finite.
(i) For n > 1, A, exists, is finite and positive, and
(12) lim A, = oo

n—oo

(iii) For n > 1,

(13) (24n12) *Apya < ||1’nW(1’)||Lp[1,oo) < (QA;-?; + 22p+1)1/p/\n+2-

(i)

(14) Ap=o0(n),n — oco.

(v) If B C [0,2A,2] has linear Lebesgue measure at least 1, then
WL, =% (1) (242012) ") Agn

Proof
Observe that (8) implies
(15) IWlly ooy < % (@) T (2) 2> 0,

and by Holder’s inequality, for = > 1,
—1 -1
1< Wig, o1 |V HLq[x—l,z] < IWlg, o1, [V HLq[O,x]’
so that
(16) W(CE‘) < ||W||Lp[x—1,a:] ;x> 1.

(i) If p = oo, this was established in Lemma 2.3(a) in [10]. Suppose now
p < o0o. Let 0 <a < b < oo. We see using (15) and (16) that

/ab z"P (/:O WP (t) dt) dx < /ab T"PYP () WP (z) da
= /a Twr [ /a T dm] dt < ¢ (a / np [ / WP (1 dt]

tnp—l—l a1 b min{¢t+1,b}
= / WP (¢ dt < 4* (a) / WP (t) / 2 de | dt
np + 1 a—1 max{t,a}

< www/4@+nwwmmw.

1
If t > a27+1, then t"PT! > 24P+ and if @ > 2, in the integral on the
right-hand side,

np . 1\" . 2\" np  20P
(t+1)"" =" L+ <t (1+-) <t'Pea.
a
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Thus
b 2np b

(17) / LR (1) di < 267 () (np + 1) 22 / PP (1) di.
a2mp+T a—1

As a > 2, t"? < ¢"+1 in the integral on the right, so

[ o a1 e

9npFI

1

a2 T

< WP (a) (np+1) e / SPWP () da.
a—1

If a is so large that a > 2np and

1
(18) 29" () (np +1)e < 3,
this gives

b a2ﬁ
/ L tPTIWP (1) dt < / "PWP () d.

2P T 1
Letting b — oo gives the finiteness of the norm [[z"W ()|, 1 «)-

(ii) The existence of A,, € (0,00) follows as the norm in (i) is finite, and
u = [|2"W ()|, 4,2, 1 & continuous function of u, with limit 0 as u —

0+ and u — oo. (In the case p = oo, this follows from the finiteness of

|zt (;zc)HLp[1 o))+ Next, for fixed u > 0,
Ay > ||on (x)‘|Lp[u,2u] > u” ”WHLP[’IL,Q’U,]
SO
lim inf AY/™ > u,
and hence

lim AY™ = oo.
n—oo

If a subsequence of {A,,} remained bounded, we see that the corresponding
subsequence of {A,} cannot admit the growth just proven.
(iii) If p = oo, the right-hand inequality in (13) is immediate. Suppose now
that p < co. Choose jg such that

270 < Apyg < 20T

We see that

An+2 Jo An+2 /Qj T 2p
[ e < S [T () e
1

=07 Ant2/27 %1 Apyo/27H

Jo
—2p i+1)2p A P
< An+2 Z 20 ) pAn+2
j=0

—2p5(jo+1)2p+1 AP 2p+1 D
< An+22( o+1) An+2 < 2 An+2‘
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Also
R O pAp427 T z 2p
"PWP (z)dr < / x"P < ) WP (x)dx
/An+2 jgo Apig2i Apq22)
A2 2j —2p
(19) < A ZQ W Afye S 2A00A0 L,

for large n. Then the upper bound in (13) follows. The lower bound follows
from

v

=" W (ﬂf)HL,,[l,oo) =" W (z )||Lp[An+2 2A542]

> (24,42) 2H$n+2W
= (2An+2)_2An+2-

(iv) If p = oo, this follows from (19) of Lemma 2.3(a) in [10]. (There ¢ (n)
plays a role similar to A,). Suppose now p < oco. If we choose a = a,, :=

HLp 7L+2,2A7L+2]

An+22fﬁ, and b = 24,12, (17) gives for large enough n,

2An42 4 2np b
/ t"PTEWP (t) dt < 24P (ay,) (np+ 1) ean / t"PWP (t) dt.
An+2 anfl

Here by (iii),

b b
/ PWP () dt < (an—1)"%F / t PP () dt
an—1 anp—1
< CAZBAD .,

with C' independent of n. Combining the above two inequalities gives

2An+2
AL, = / t TP (t) dt
An+2
op1 [t 1
< (24,40)°P7 / t"PTLWP (1) dt
An+2
< (24052)P 120 () (np + 1) e CATBAL
m/}”( n) 2
< AP .
= an - ¢ n+2

Here C7 is independent of n. If we write a,, = §,n, we can recast this as
1 1 2
—— < (Cyj—edn.
PP (an) on
1
Since 9 has limit 0 at oo, and a,, = Ap422 "+ — 00, n — 00, it follows
that necessarily 0, = 0 (1) and so a,, = o(n). That is

Apyo =0(n).
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(v) Exactly as above, Holder’s inequality gives

1< HWHLP(B) HWﬁlHLq(B) < HWHLP(B) HWﬁlHLq[O,Aszrz] ’

Using (15), we can continue this as

Wiz, 2 W (Azor2)
> 9 (Aznt2) " WL, (4 0.00)
¥ (1) (242042) " |22 20 (2

= (1)t (2A2n+2)7(2n+2) Agpia.

I

Vv

)HLP[A2n+2,2A2n+2}

Lemma 2.3
There exists Co > 0 such that for n > 1 and all polynomials P of degree
<mn,

||PWHLP[1600A2n+2,OO) < C24_n ||PWHL:D[070°) ’

Proof
Our approach is similar to that in [9]. Let P be a polynomial of degree
k <n, say

k
P(z) :CH(z—xj).
j=1
We assume p > 8, ¢ # 0, and split the zeros into “small” and “large” zeros:
we assume that
lz| < p, <4
lz;l > p, §>i.

For]u\ﬁ%p,mZpandi<j§k,

1+$”%|<2<1+w><4$
1= Jul /|| T p) = P

:L‘—J}j

u—mj

Then for such z,u

()
P (u)

‘Pm

ﬁ 2z ( :x)k_i
< i
i 1= p

We now apply a famous lemma of Cartan:

7

[[w—a)| =<

J=1
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for u outside a set of linear measure at most 4ec [1, p. 175], [2, p. 350].

Choosing € = 755, we obtain
‘P(x) <20095>"c (200x>”
< < ;
P (u) p P
for z > p,u € [0, %p] \S, where
de 1
S) < — —=p.
meas (S) < 100p< 3P
Recall that meas denotes linear Lebesgue measure. Then for such u,
200\ " n
(20) HPW”LPHOOp,oo) < 7 [P (u)] ||z W(CU)HLPMOOp,oo)'

Moreover, [(), ip] \S has measure at least %p > 1, so we may find B C
[O, i p] \S with linear measure at least 1 and hence

200\ " .
129 s s 17 sy < (250 ) 1PW s 1879 )1, ey

Now we choose p = 4Ag,12, at least for n so large that 445,15 > 8. Then
[0, ip] \S C [0, Agyt2]. By the previous lemma,

WL, =¥ (17" (242042)" ") Aoy,

Combining the above inequalities, and (v) of the above lemma, gives if P is
not identically 0,

IPW 1, 1400p,00) / IEPW N 1, 0,00)

200\" | _ —(2n
(Z20) 1" @l g / [ (07" @A) Ay

IN

1\ o ) "
= <2p2> HZL‘2 W(x)HLpMOOp,oo)/ |:1/} (1) ! (2A2n+2) (2n+2) Agn_,_g}

< C8"A3,.,,

by (iii) of the previous lemma. Here C' is independent of n and P, and
Aspy2 = 0(n), so the result follows. For the remaining finitely many n, for
which 4As,12 < 8, a simple compactness argument gives the result, if Cs is
large enough. W

Proof of Theorem 2.1
This follows from Lemma 2.3, its analogue in (—o0,0], and the fact that
A, =o0(n). R

‘We also record:

Lemma 2.4
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Let W : R — (0,00) be continuous, 1 < p < oo, and assume that for each
n >0,

(21) | 2" W () ||, ®) < oo

Then there exists an increasing sequence of positive numbers {&,},—, such
that for n > 1 and all polynomials P of degree< n,

(22) | PW I, (ejze,) < Cr27" | PW 1, (<1,1)5
where C7 is independent of n,p, P.
Proof

See Theorem 2.2 in [10]. W

3. TAIL ESTIMATES

We prove a "shifting" weighted Hardy inequality, involving the function
_ -1
¢($> - HWHLP[‘T,oo) HW HLq[O,.ﬂ y L > 0.

Theorem 3.1

Let W : R — (0,00) be continuous. Let 1 < p < oo and %—i—% =1. The
following are equivalent:

(I) There exists a decreasing function n : (0,00) — (0,00) with limit 0 at
oo such that

(23) WL afzay < 1 @) [[F W1 0,00
for all a > 0 and every absolutely continuous function f : R — R with
1 (0)=0.
(1)
. . -1
(24) Jim ¢ (a) = Tim [Wllp,a.00) W00 = 0

with a stmilar limit as a — —oo.

Lemma 3.2
Let a > 0. Then

11
Wy <P (5006 () ) 170 gy

for every absolutely continuous function f : [a,00) — R with f(a) = 0.
1 1

Here if p=o00 or p =1, we interpret prqe as 1.

Proof

Let

B = sup ) ||W||Lp[x,oo) HWilHLq[a,x] ’

z€(a,00

The classical weighted Hardy inequality asserts that for every f as above,

VW faey < pPae B FW,

a7w) )
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(See [13, p. 13, Thm. 1.14] for the proof when 1 < p < co. Take ¢ = p there
and w = v = WP. For p =1 or p = 0, see [13, Lemma 5.4, p. 49]. An
alternative reference is [7].) Since

B< sup )HWHLP[.’L'OO HW 1HL ¢[0,2] —Sllp(ﬁ( )

z€(a,00

the result follows. B

Lemma 3.3
Let a > 0. Then

||fW||Lp[a,oo) < (1 +p%q%) <Sup¢ ) Hf WHLP[UOO ’

for every absolutely continuous function f : [0,00) — R with f(0) =

Proof
SR AT
Then

Write for x > a,
(25) HfWHLp[a,oo) < ”CWHLp[a,oo) + HleHLp[a,oo) :
Here by Holder’s inequality, applied to C,
-1
ICW L aeey < 17500 12,00 112, fo,00)
= |lFw HL,,[O,a) ¢(a).

Moreover by Lemma 3.2, as f1 (a) =0,

W10y < 250 (506 (0)) W)

Combining the above three inequalities gives the result. B

Proof of Theorem 3.1
Sufficiency of (24) and its analogous limit at —co
This follows directly from Lemma 3.3. We can choose

Ny (a) = <1 +p1/pq1/q) sup o (), a >0,
r>a
with a similar function 7_ to handle (—o0, 0), and then set n = max {77,, 17+}.
Necessity of (24) and its analogous limit at —oo
For p =1 and p = oo, the necessity was established in the proof of Theorem
3.1 in [10]. Suppose now 1 < p < co. Let a > 0 and

min{xz,a}
f(x):/ W= x> 0.
0
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Then

Wl = ([ W00) = 0,

£ WL 0,00y @ (@)
= [[FWIlL, 000 HW_lqu[o,a] WL, fa,00)

SO

Jr
= ) W

_ ( /0 W—q> Wl o) = 1FW L, o) -

Our hypothesis gives
n (a) > HfWHLp[a,oo) / Hf/WHLp[O,oo) =¢ (a) .

So ¢ has limit 0 at co. Similarly, the analogous limit follows at -oco. W

4. WEIGHTED APPROXIMATION

We begin with two lemmas, which are similar to corresponding lemmas
n [10]. We shall use notation specific to this section: we use integers n > 4
and 1 <m < 7, as well as parameters

1

where {g,},-, are as in Theorem 2.1. We let p(m) denote an increasing
function that depends on m and W, while o (A) denotes a function increasing
in A. These functions change in different occurrences. The essential feature
is that o is independent of m,n,p and functions f, while p is independent
of A\,p and functions f. At the end, we choose m to grow slowly enough as
a function of n, and then A — oo sufficiently slowly. We let P, denote the
set of polynomials of degree < m with real coefficients.

Lemma 4.1

Let W : R — (0,00) be continuous and satisfy (6), with an analogous limit
at —oo

(a) There exists an increasing function o : [0,00) — [0, 00) with the follow-
ing properties: let m, A > 1. For 1 < p < oo and all absolutely continuous
f with f'W € L, (R), there exists R, € Pm such that

I(f = Ron) Wllp,aran < Hf Wl e

(b) There is an increasing function p : Z4 — (O, o0) dependlng only on W
such that

1R W L,z < 2 m) (1 WL+ 1 WL ) -
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Proof
(a) By the classical Jackson’s Theorem [3, (6.4), Theorem 6.2, p. 219], there
exists R,, € Py, such that

A
1f = Rl —ox2x < mrl 111, o2

Then

TA _
1(f = Rn) WL, —anon < o W —onan W IHLOO[—2/\,2/\] HfIWHLp(R)'
So we may take

o (N) =mAWIlL_ —ax2y HW%HLOOHA,M] '

(b) From our restricted range inequalities, and continuity of W,

IR W I, ) < ClBml 1= gmgo] WL = gmsam] -

Moreover, from the proof of (a),

||Rm ”Lp [—2X,2)]

IN

A
Iz, 2x2n + [ PN
W, onasg (W Uy onon + A F W, o]
We shall show that
m mg
26)  NRullgyfogg) < Cm7 (52) 7 IRl or2y

where C' is independent of m, A, ¢, {Rm}. (Recall that 2A < ¢y,).Then, on
combining the above inequalities, we obtain

IR Wl < 0 () [ISW L onang + 1 WL oo

IN

where

p(m) = Cm¥Pgrnti/p ”W”Loo[fqm,qm} ||W_ 1+ 7qm) -

' HLOO[—qmgm} (

Now we proceed to establish (26). Recall the Chebyshev inequality [3,
Proposition 2.3, p. 101], valid for polynomials P of degree < m :

1P ()] < [T () | Pl Lo [~1,), 2] > 1.

Here T, is the classical Chebyshev polynomial of the first kind. By dilating
this, and using the bound

T ()] < (2]2))™, |2 > 1,

we obtain

qm\™
1Bl < (52) 1 Rl -2n 00
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Using Nikolskii inequalities [3, Theorem 2.6, p. 102], we continue this as

1Bl gl < 2am) P | Rl foo g sain]
Gm\™ [ (p+ 1) m2 1/p
< 2 (%) () Malnanan,

and then we have (26). W

Lemma 4.2
There exists C > 0 such that for large enough n, and for 1 < X < %qn, there
are nonnegative polynomials V,, of degree < 3n/4 such that

dn

2 1- n < N\ _)\7)‘ )
(21) 1= Vo) <O we [N
(28) 0<V,(x) <Clz| € [N 2\;

In )2

< < — .

(29) 0< V(@) <C ()" Jal € 27, g
Here C is independent of n, A and x.
Proof

See Lemma 4.2 in [10]. W

Proof of the sufficiency part of Theorem 1.2

This is quite similar to that of Theorem 1.1 in [10], but there is an im-
portant difference: there we introduced estimates for R,,W in the uniform
norm, while here we need to restrict ourselves to a given L, norm. So we
include all the details.

We may assume that f(0) = 0. (If not, replace f by f — f(0) and absorb
the constant f (0) into the approximating polynomial). We choose n > 1
and 1 < m < n/4, and let A satisfy 1 < \ < %qm. Let R,, and V,, denote
the polynomials of Lemma 4.1 and 4.2 respectively, and let

P, = R,V
Then P, is a polynomial of degree < n, and

(= PYW, ey

< (f = P) Wlle,m)
S || (f - Pn) WHLp[_Qnﬂn] + ||fWHLp(R\[—Qn7Qn]) + ||PnWHLp(R\[_Qn7Qn])
< N =P Wi, i—guae] T 1IWL,@\=xn) + C4 " I1PaW Il Ly =g ]
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by Theorem 2.1 and as ¢, > A. Here,

|| (f - Pn) WHLP[_Q'MQH
< N =P) Wl man + Wz, =an) + 1PV L, (= gn.an\=AA)
(3192 2Ty + 15 + Ts.

Firstly
Ty < |[(f = Ro) Wl oan + 1Rm (1= Vo) WL, —a
< = RBn) W, oan + 1B WL, oan 1 = Vallooo-an
o (A
< T @+ o (m) (LWl + 17 Wl @) 1L~ Vallzaiay
a(A) Gn
< 7“f'WHL,,(R)+P(m);Hf'WHL,,(R),
(32)

by Lemmas 4.1, 4.2 and Theorem 3.1. Note that since f(0) = 0, the latter
gives
Wl @ <7 O0) LWL, ®)-

The crucial thing in (32) is that o and p are independent of f,n,p. Next,
Theorem 3.1 gives,

(33) To <N 1 WL, )
Of course this estimate also applies to the middle term in the right-hand
side of (30). Next,

T3 < |[[PaW]L,a<lel<2n) + 1PaW L, 22<2l<qn)

= T3 +T3s.
Here
T31 < [[RWll,a<lel<en 1 Vall Lo (d<le<2n)
< C (I (R = )WL, x<lai<2n) + I WL, 0<le<2n))
o (A
B0 < (TR Wl + 0 1 Wl ).

by Lemmas 4.1, 4.2 and Theorem 3.1. Also,

Tss < |[BaW 1, @x<lei<an) Vall Lo 23<]21<q0)

4n\?
< pm) I W@ ()

by Lemmas 4.1, 4.2 and another application of Theorem 3.1. Combining
this and the estimates in (31) to (34) gives

” (f - Pn) WHLP[*Qan}

a(N)

(35) < Wiy {72 o) 2 g0}
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Then using this estimate and Theorem 3.1, we deduce that

o(A n
1Pz, g < Wz )€ {() +om) T+ 1} |

m
Combining this estimate, (30) and (35) gives

. o) ()\) dn _

f - P)W <|\f'w c<——= = A)+47"
WG = P Wl < W€ { 250 4 p ) 2 4 0+ 470
with C independent of n, m, A, p, 0. The functions ¢ and p obey the conven-
tions listed at the beginning of this section, and are independent of f,n, m, p,
as is the constant C'. For a given large enough n > 1, we choose m = m (n)

to be the largest integer < n/2 such that
1/2
pm) 2 < (),
n n
Since (by Theorem 2.1) g, /n — 0 as n — oo, while p is increasing and finite

valued, necessarily m = m (n) approaches co as n — oo. Next, for the given
m = m (n), we choose the largest A = A (n) < m such that

o\ <vm
As o is finite valued, necessarily A (n) — oo, son (A (n)) — 0,n — oco. Then
for some sequence {n,,},>; with limit 0, and which is independent of f,

inf - P < ! .
dé%ng YWiL,@ < llf Wi, m

For the remaining finitely many n, we can set n,, = 7 (0), and use
(

degi(lzlvf)gn” (f = PYWllr,@ < 1fWllL,@ <n0) 1 WL, ®)-

Proof of the necessity part of Theorem 1.2

We assume that (5) is true for every absolutely continuous f with || f'W ||, )
finite, where p = 1 or p = oo. In particular, if we choose f to be 0 outside
[—1,1], and not a.e. a polynomial in [—1, 1], we obtain for some sequence
{P,},;; of polynomials with degrees tending to oo,

IPaW |, (j2|>1) — 0,n — o0.
As P, behaves for large |z| like its leading term, this forces
2" W () ||, ) < o0,

for each n > 0. Then the hypothesis (21) of Lemma 2.4 is fulfilled, and
consequently there exist {¢,,}77; such that (22) holds for all polynomials P,
of degree < m. Let us consider an absolutely continuous f with f(0) =0
and || f'W{z, ) finite. Our hypothesis asserts that there are for large n

o0

polynomials {P,} >, of degree < n with
| (f = Po) WliL,® <m0l Wi, )
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= WL, qeize,) < Ml F Wle,®) + 1PaWllL,(z)>¢,)-

o0
n=1"

By Lemma 2.4, and then our hypothesis on {P,}
I1PW L, (aize,) < C27"[1PaW |1, 1—11)
< 27" (Wl =10y + Ml S Wz, m)) -

/wa’ (t) dt

HWHLOO[OJ} Hf/HLp[O,l]
IW | oo, Wl 0,1 HfIWHLp[o,u :
A similar inequality holds over [—1,0] and hence

Wz, =11 < 20W o m1 g W e e 1 Wl —1,1)-
The case p = oo is easier. Combining all the above inequalities gives
WL, (21ze,) < Il Wile, ®),
where {n}}>°, has limit 0 and is independent of f. The same inequality
then holds for the L, norm of fW over |z| > X, where A € [£,,&,,1]. Tt
follows that there is a positive decreasing function 7 with limit 0 at co such

that (23) holds for absolutely continuous f with f(0) = 0 and |[f'W|| (r)
finite. Then Theorem 3.1 gives the limit (6). W

Here

W00 < IIWllheoa

L,[0,1]

IN

IN

5. PROOF OoF THEOREM 1.3

In this section, we let
Wy (z) = exp (—x2) , T ER,

denote the Hermite weight. Moreover, we determine ¢, s by the equations

1 1 1 1
-+ -=1land -+ - =1.
ros P q

The construction is more complicated than that in [10], but the general idea
is the same. We choose intervals

j—aj,j+a4],7>3
where a; < 2%., 7> 3. We set

(36) W(x)=Wa(zx), zeR\|JU-aji+e).
j=3

(I) For the case where p < r, we set

(37) W (j) =Wa(j5) /[ilogj], j =3,

choose

(38) B e (sq)
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and

(39) aj=——3,j2>3
T 25 (log )"

(IT) For the case where p > r, we set

(40) W (j) =W2(j) [jlogj], j >3,
choose

(41) B € (r,p)

and

2 R

In both cases we then define W so that W/W5 is linear in [j — «;,j] and
in [j, j + o;]. This ensures that W is continuous in R. (Of couse we could
ensure it is C°° by smoothing at j and j + «;). It also implies under (38)
that,

1
4 1> > R
(43) _W(w)/Wz(w)_sz,xe ;
and under (40),

(44) 1< W (x) /Wa(z) <1+2%zeR.

(Since logz = o (), these inequalities are clear for large |z|. However they
are even true for "small" |z|, as shown by some simple calculations.) We
shall make repeated use of the fact that uniformly in j and z,

WQ(CE) NWZ(]’)’ZL‘G [j_aj7j+aj]>

as follows since a;; < % We now show that W fulfils the asymptotic be-
havior required for Theorem 1.3.

Lemma 4.2
(a) Let p <1 and W satisfy (37), (38) and (39). Then

(45) llis;i‘p HWilHLq[O,x} ”W”Lp[:p,oo) =
but
(46) Jim ([ g 12 o) = O

(b) Let p > r and W satisfy (40), (41) and (42). Then (45) and (46) are
valid.

Proof

(a) Note that as 1 <p < r,sop,s < co. Let ¢ > 0. Some simple calculations
show that for 1 < a < b,

(47) /ab Wi ~ Wy () min{z,b—a}
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and if also b < 2a,
b 1
(48) / waWf(a)min{b,b—a}.

Since o = O (%), we see that Wy (5 + «;) ~ Wa(j) and hence applying

(48),
00 J+1l—aji1 C
[wr= | wp > S, (.
j j+ay J

Moreover, by (47), if ¢ < oo,
/ "W > ¢ (jlog )" / LWyt logi) o Wa ).
3
Then
HW_lHLq[O,j} WL, ey = Clilogyl] a}/qj_l/p

= C(logj)'™P/% — oo,

Jj — 00, by (38). We then have (45) for the case 1 < p,q < 00. If ¢ = o0, it is
easy to see that (45) persists, by minor modifications of the above arguments.

The proof of (46) is a little more difficult because it involves a full limit.

Let x > 2 and jo denote the least integer > x. We see that as a; = O (%) ,
z Jo—l rjta;

[w < [ wrse Y [ wee [ e
0 02\ U (G—aj.5+;) = Ji-ay [io—asjq 2]

j=3
T .7'071

< /0 Wi+ 0 oWy () (G1og4)° + Cagy W™ () (o log o)’
j=3

< CWy(z)™* Jo+ CWy s (z) 2° ! (logz)* 7,
as for large enough j, and some 6 < 1 independent of 7,
o, W5 (5) (jlog)°
aj Wy * (= 1) ((F — Dlog (j — 1))°
We also used (47). Then this and (43) give
[l CWy () &' ~1/* (log ) =7/ | Wa | ¢

z7oo)

<.

IN

Ls[0,2] HWHLT[m,oo)

IN

C’VV{1 (z) pi=1/s (log :1:)1_5/5 Wa () Al
C (logz)'%/* = 0,

x — 00 as 3 > s, recall (38).
(b) This is very similar to (a). Note that as p > r > 1, so r,q < co. By
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(40), if p < oo,

e8] j+aj/2
/ e / (jlog j) W2 > Cayi? (log 5P Wa ()P -
j i
Moreover,

J J—ay
/ W_qz/ LWy oW (),
0

j—1+aj_ 1
by (47). Then

W=

Vv

L 1 . .
IWIIL, .00 Cj 1/q04j/p310g.7
= C(log )" P/" — oo,

as < p (recall (41)). If p = oo, this argument requires minor modifications.
So we have (46). Next, if j; is the largest integer < z,

fe's) J+OzJ ) o
/ W< / - W3 + Z/ 5 (jlogj)" +/ W3 (j1 log ji)
z (JS,OO)\ U (jfajrj+aj [33,j1+04j1}

1“L€1[01j] ’

J=J1 J=n
< / Wy +C Z a;j (jlogg)" Wy () + CW3 () aj, (j1log j1)"
Jj=ji1+1
< CWa(2)" Jo+ 377" (log 1) " W3 ()

< Ca2" ! (loga) P Wy (x),
by (48) and as again for large j and some 6 < 1,
a; (jlogj)" W3 (j)
aj1((j —1log (j —1))" W3 (j — 1)
Then (46) and (47) gives
(i

< 46.

Clwy Wa (z) 2"V (log ) =7/"
< OWyt(z) =YWy () 1T (logz) =P/
= C(logz)' ™" >0,

x — 00, as 3 > r (recall (41)). W

IN

Ls[0,2] HWHLT[ac,oo)

Proof of Theorem 1.3
This follows directly from the limit conditions in Lemma 4.2 and from The-
orem 1.2. W
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