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Abstract

We estimate the distribution function of a Lagrange interpolation poly-
nomial and deduce mean boundedness in Lp; p < 1:

1 The Result

There is a vast literature on mean convergence of Lagrange interpolation, see [4{
8] for recent references. In this note, we use distribution functions to investigate
mean convergence. We believe the simplicity of the approach merits attention.
Recall that if g : R! R, and m denotes Lebesgue measure, then the distri-

bution function mg of g is

mg(�) := m (fx : jg(x)j > �g) ; � � 0: (1)

One of the uses of mg is in the identity [1,p.43]

k g kpLp(R)=
Z 1

0

ptp�1mg(t)dt; 0 < p <1: (2)

Moreover, the weak L1 norm of g may be de�ned by

k g kweak(L1)= sup
�>0

�mg(�): (3)

If
k g kLp(R)<1;
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then for p <1, it is easily seen that

mg(�) � ��p k g kpLp(R); � > 0: (4)

and if p =1,
mg(�) = 0; � >k g kL1(R) :

Our result is:

Theorem 1
Let w; � : R! R be measurable and let � have compact support. Let n � 1 and
let �n be a polynomial of degree n with n real simple zeros ftjngnj=1. Let


n :=
nX
j=1

1

j�0nwj (tjn)
: (5)

(a) Let 0 < r <1 and assume there exists A > 0 such that

m�n�(�) � A��r; � > 0: (6)

Then if Ln[f ] denotes the Lagrange interpolation polynomial to f at the
zeros ftjng of �n, we have

mLn[f ]�(�) � 2A
1

r+1
�
8 k fw kL1(R) 
n=�

� r
r+1 ; � > 0; (7)

(b) Assume that
m�n�(�) = 0; � > A: (8)

Then
mLn[f ]�(�) � A k fw kL1(R) 
n=�; � > 0: (9)

Corollary 2
Let w; � be as in Theorem 1 and assume that we are given �n; ftjngnj=1 for each
n � 1 and


 := sup
n�1

nX
j=1

1

j�0nwj (tjn)
<1: (10)

(a) If r <1 and (6) holds for n � 1, then for 0 < p < r
1+r , we have for some

C1 independent of f; n

k Ln[f ]� kLp(R)� C1 k fw kL1(R) : (11)
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(b) If (8) holds for n � 1, then we have (11) for 0 < p < 1, as well as

k Ln[f ]� kweak(L1)� C1 k fw kL1(R) : (12)

Remarks

(a) Note that (6) holds if

k �n� krLr(R)� A; n � 1

and (8) holds if
k �n� kL1(R)� A:

Of course (6) is a weak Lr condition.

(b) Under mild additional conditions on w and � that guarantee density of the
polynomials in the relevant spaces, the projection property Ln[P ] = P ,
deg(P ) � n� 1, allows us to deduce mean convergence of Ln[f ] to f .

(c) Orthogonal polynomials fpn(u; x)g1n=0 such as those for generalized Jacobi
weights u [4] or the exponential weights u in [2] admit the bound

jpn(u; x)ju1=2(x) � C
����1� jxjan

�����1=4 ; x 2 [�1; 1]
for a C independent of n and a suitable choice of an. Thus these polyno-
mials admit the bound (6) with r = 4. Moreover, if ftjng are the zeros of
pn, then a great deal is known about p

0
n(tjn), and in particular (10) holds

with an appropriate choice of w. More generally, for extended Lagrange
interpolation, involving interpolation at the zeros of Snpn, where Sn is a
polynomial of �xed degree, it is easy to verify (10) under mild conditions
on Sn.

(d) A result of Shi [7] implies that if (11) holds with C1 independent of f and
n, and if �n is normalized by the condition

k �n� kLp(R)= 1;

while the ftjng are all contained in a bounded interval, then (10) holds.
Thus in this case (10) is necessary for (11). However, our normalisation
(6) or (8) of �n involves a condition with r > p, so there is a gap.

(e) Of course (10) requires w(tjn) 6= 08j; n. We may weaken (10) to

sup
n�1

X
j:w(tjn) 6=0

1

j�0nwj (tjn)
<1

if we restrict f by the condition w(tjn) = 0 ) f(tjn) = 0. In particular
this allows us to consider w with compact support even when ftjngj;n is
not contained in a bounded interval.
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Our proofs rely on a lemma of Loomis [1,p. 129].

Lemma 3
Let n � 1 and fxjgnj=1; fcjgnj=1 � R. Then for � > 0,

m

0@8<:x :
������
nX
j=1

cj
x� xj

������ > �
9=;
1A � 8

�

nX
j=1

jcj j : (13)

Proof
When all cj � 0, we have equality in (13) with 8 replaced by 2 [1,p.129]. The
general case follows by writing

cj = c
+
j � c

�
j

where c+j = maxf0; cjg; c
�
j = �minf0; cjg and noting that������

nX
j=1

cj
x� xj

������ > �)
������
nX
j=1

c+j
x� xj

������ > �

2
or

������
nX
j=1

c�j
x� xj

������ > �

2
or both. 2

Proof of Theorem 1

(a) Assume that r <1 and let a 2 R; � > 0. We may assume that

k fw kL1(R)= 1: (14)

(The general case follows from the identitymbg(�) = mg(�=b) for b; � > 0).
Now

(Ln[f ]�) (x) = (�n�)(x)
nX
j=1

(fw)(tjn)

(�0nw)(tjn)(x� tjn)

so
jLn[f ]�j (x) > �

implies
j�n�j (x) > �a (15)

or ������
nX
j=1

(fw)(tjn)

(�0nw)(tjn)(x� tjn)

������ > �1�a (16)
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or both. The set of x satisfying (15) has, by (6), measure at most A��ar.
The set of x satisfying (16) has by Loomis' Lemma, measure at most

8

�1�a

nX
j=1

���� fw�0nw
���� (tjn) � 8�a�1
n:

Now, if � 6= 1, we choose a so that

A��ar = 8�a�1
n , a =
1

r + 1

�
1� log [8
n=A]

log �

�
:

Then we obtain

mLn[f ]v(�) � 2A
1

r+1 (8
n=�)
r

r+1 ;

that is (7) holds. The case � = 1 follows from continuity properties of
Lebesgue measure.

(b) Here we have instead

jLn[f ]�j (x) > �)

������
nX
j=1

(fw)(tjn)

(�0nw)(tjn)(x� tjn)

������ > �

A

and again (9) follows from Loomis' Lemma. 2

Proof of Corollary 2

(a) We may assume (14). Now by hypothesis, there exists b > 0 such that �
vanishes outside [�b; b]. Thus in addition to (7), we have the estimate

mLn[f ]�(�) � 2b; � > 0:

Then from (2), if 0 < p < r
r+1 , we have

k Ln[f ]� kpLp(R)� p
�Z 1

0

tp�1(2b)dt+ 2A
1

r+1 (8
)
r

r+1

Z 1

1

tp�1�
r

r+1 dt

�
=: C1 <1:

(b) Here trivial modi�cations of this last estimate allow us to treat 0 < p < 1,
while (9) gives

k Ln[f ]� kweak(L1)= sup
�>0

�mLn[f ]�(�) � C
: 2
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We make two �nal remarks: The proof of Theorem 1 also gives a weak
converse Marcinkiewicz{Zygmund inequality. For a given f , de�ne


n(f) :=
nX
j=1

jfwj (tjn)
j�0nwj (tjn)

:

Then (7) holds with 
n replaced by 
n(f). Moreover, (7) can be reformulated
in the following way: If P is a polynomial of degree � n� 1 satisfying

jPwj (tjn) � 1; 1 � j � n;

then
mP�(�) � 2A

1
r+1 (8
n=�)

r
r+1 ; � > 0:

It would be useful to have more sophisticated estimates for mP� . For special
weights w; � and points ftjng, converse quadrature sum inequalities imply these
[4].
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