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Abstract

We estimate the distribution function of a Lagrange interpolation poly-
nomial and deduce mean boundedness in L,, p < 1.

1 The Result

There is a vast literature on mean convergence of Lagrange interpolation, see [4—
8] for recent references. In this note, we use distribution functions to investigate
mean convergence. We believe the simplicity of the approach merits attention.

Recall that if g : R — R, and m denotes Lebesgue measure, then the distri-
bution function mg of g is

me(N) == m ({z: |g(x)] > A}, A> 0. (1)
One of the uses of m, is in the identity [1,p.43]
19150 [ #7 'mg(t)dt, 0 <p < oc. ®)
0
Moreover, the weak L1 norm of g may be defined by
H g Hweak(Ll): sup )‘mg()‘) (3)
A>0

If
g llz,®< oo,



then for p < oo, it is easily seen that
mg(A) <A | g ”ip(]g)a A>0. (4)
and if p = oo,
mg(A) =0, A>[ g Lo -

Our result is:

Theorem 1
Let w,v : R — R be measurable and let v have compact support. Let n > 1 and
let 7, be a polynomial of degree n with n real simple zeros {tjn}?zl- Let

i 1
N = 2 T ) ®)

(a) Let 0 <r < oo and assume there exists A > 0 such that
M, (A) < AN, A > 0. (6)

Then if L,[f] denotes the Lagrange interpolation polynomial to f at the
zeros {tjn} of mp, we have

mp, iy () < 247 (8 || fw || @) Qu/A) T, A > 0; (7)

(b) Assume that
Mz, ,(A) =0, A > A. (8)

Then
an[f]V()‘) < A || fw ||LOO(R) Qn/Aa A>0. (9)

Corollary 2
Let w,v be as in Theorem 1 and assume that we are given m,,{t;n}7_, for each
n>1 and

1

Qi=sup )y —— < . (10)

2 Tl )

(a) Ifr <oo and (6) holds for n > 1, then for 0 < p < 1., we have for some
Cy independent of f,n

I Lolf IV I, @< Cr || fwllo. @) - (11)



(b)

If (8) holds for n > 1, then we have (11) for 0 < p <1, as well as
I Llf1V llwearn) < Co | fw |z - (12)

Remarks

(a)

Note that (6) holds if
|7 < A n =1

and (8) holds if
| T L@ < A

Of course (6) is a weak L, condition.

Under mild additional conditions on w and v that guarantee density of the
polynomials in the relevant spaces, the projection property L,[P] = P,
deg(P) < n — 1, allows us to deduce mean convergence of L,[f] to f.

Orthogonal polynomials {p, (u, z)}52, such as those for generalized Jacobi
weights u [4] or the exponential weights w in [2] admit the bound
—1/4

—m , ¢ €[—1,1]

|p (1, )] ul/Q(m) <C ‘1

Qn

for a C' independent of n and a suitable choice of a,,. Thus these polyno-
mials admit the bound (6) with r = 4. Moreover, if {¢;,,} are the zeros of
Pn, then a great deal is known about p/,(¢;,,), and in particular (10) holds
with an appropriate choice of w. More generally, for extended Lagrange
interpolation, involving interpolation at the zeros of S,p,, where S, is a
polynomial of fixed degree, it is easy to verify (10) under mild conditions
on S,.

A result of Shi [7] implies that if (11) holds with C; independent of f and
n, and if m, is normalized by the condition

| 7oV [z, @)= 1,

while the {¢;,} are all contained in a bounded interval, then (10) holds.
Thus in this case (10) is necessary for (11). However, our normalisation
(6) or (8) of m, involves a condition with r > p, so there is a gap.

Of course (10) requires w(t;,) # 0Vj,n. We may weaken (10) to
1
sup Z Ty <00
”le:w(tm);éo |7Tn1,U| (t7")

if we restrict f by the condition w(tj,) = 0 = f(t;») = 0. In particular
this allows us to consider w with compact support even when {t;,,};  is
not contained in a bounded interval.



Our proofs rely on a lemma of Loomis [1,p. 129].

Lemma 3
Let n > 1 and {z;}7_y,{c;}7—; CR. Then for A >0,

m x:zcj'>)\ <

S lel- (13)

8
|
8
<
>| oo

Proof
When all ¢; > 0, we have equality in (13) with 8 replaced by 2 [1,p.129]. The
general case follows by writing

+

cj =¢j —¢;
where c;r =max{0,¢;}, ¢;; = —min{0,¢;} and noting that
n n —+ n —
Cj Cj A Cj A
> A= >~ or > — or both. O
Zx—xj Z:E—xj 2 Zm—xj 2
j=1 Jj=1 Jj=1

Proof of Theorem 1

(a) Assume that r < oo and let a € R, A > 0. We may assume that

I fw |z @)= 1. (14)
(The general case follows from the identity muq(A) = mg(A/b) for b, A > 0).
Now
o e () (4)
(Ealf1) @) =)o) D @) — )
0
Ll f1V] () > A
implies
|| () > A¢ (15)
or
. (fw)(tj”) > )\l-e (16)

2 () () (@ — )



or both. The set of z satisfying (15) has, by (6), measure at most AX™%".
The set of x satisfying (16) has by Loomis’ Lemma, measure at most

8
)\1—& Z

Jj=1

fw

7Tn w

'(jn)<8v 1Q,.

Now, if A # 1, we choose a so that

AN =8)\TI0, & a =

1 log [892,, /4]
1-— .
r+1 log A

Then we obtain

< (80, /A) 7T

an[f]v(/\) <24 1

that is (7) holds. The case A = 1 follows from continuity properties of
Lebesgue measure.

Here we have instead

LalfIo] (@) > A = Z > 2

and again (9) follows from Loomis’ Lemma. O

Proof of Corollary 2

(a)

We may assume (14). Now by hypothesis, there exists b > 0 such that v
vanishes outside [—b, b]. Thus in addition to (7), we have the estimate

an[f]V(A) <2b, A > 0.

Then from (2), if 0 < p < we have

r+1’
1 ) e’} N

|| Ln[f}V||’£p<R)§p< |t s 27 sy tﬂmdt) — 0 < .
0 1

Here trivial modifications of this last estimate allow us to treat 0 < p < 1,
while (9) gives

| Lol f1V lweak(z,)= Sup Amp (A <CQ. O
>



We make two final remarks: The proof of Theorem 1 also gives a weak
converse Marcinkiewicz—Zygmund inequality. For a given f, define

[l (¢
Zm%

Then (7) holds with Q,, replaced by Q,(f). Moreover, (7) can be reformulated
in the following way: If P is a polynomial of degree < n — 1 satisfying

|Pwl(tjn) <1, 1<j <n,

then ) i
mps(A) < 2475 (802,/0)7T, A > 0.

It would be useful to have more sophisticated estimates for mp,. For special

weights w, v and points {t;,, }, converse quadrature sum inequalities imply these
(4].
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