On Boundedness of Lagrange Interpolation in

$$L_p, p < 1$$

D.S. Lubinsky
Mathematics Department,
Witwatersrand University,
Wits 2050, South Africa.
e-mail: 036dsl@cosmos.wits.ac.za

10 December 1997

Abstract

We estimate the distribution function of a Lagrange interpolation polynomial and deduce mean boundedness in L_p , p < 1.

1 The Result

There is a vast literature on mean convergence of Lagrange interpolation, see [4–8] for recent references. In this note, we use distribution functions to investigate mean convergence. We believe the simplicity of the approach merits attention.

Recall that if $g: \mathbb{R} \to R$, and m denotes Lebesgue measure, then the distribution function m_g of g is

$$m_q(\lambda) := m\left(\left\{x : |g(x)| > \lambda\right\}\right), \ \lambda \ge 0. \tag{1}$$

One of the uses of m_g is in the identity [1,p.43]

$$\|g\|_{L_p(\mathbb{R})}^p = \int_0^\infty pt^{p-1} m_g(t) dt, \ 0 (2)$$

Moreover, the weak L_1 norm of g may be defined by

$$\parallel g \parallel_{weak(L_1)} = \sup_{\lambda > 0} \lambda m_g(\lambda). \tag{3}$$

If

$$\parallel g \parallel_{L_p(\mathbb{R})} < \infty,$$

then for $p < \infty$, it is easily seen that

$$m_g(\lambda) \le \lambda^{-p} \parallel g \parallel_{L_p(\mathbb{R})}^p, \ \lambda > 0.$$
 (4)

and if $p = \infty$,

$$m_g(\lambda) = 0, \ \lambda > \parallel g \parallel_{L_{\infty}(\mathbb{R})}.$$

Our result is:

Theorem 1

Let $w, \nu : \mathbb{R} \to R$ be measurable and let ν have compact support. Let $n \geq 1$ and let π_n be a polynomial of degree n with n real simple zeros $\{t_{jn}\}_{j=1}^n$. Let

$$\Omega_n := \sum_{j=1}^n \frac{1}{|\pi'_n w| (t_{jn})}.$$
 (5)

(a) Let $0 < r < \infty$ and assume there exists A > 0 such that

$$m_{\pi_{-\nu}}(\lambda) < A\lambda^{-r}, \ \lambda > 0.$$
 (6)

Then if $L_n[f]$ denotes the Lagrange interpolation polynomial to f at the zeros $\{t_{jn}\}$ of π_n , we have

$$m_{L_n[f]\nu}(\lambda) \le 2A^{\frac{1}{r+1}} \left(8 \| fw \|_{L_{\infty}(\mathbb{R})} \Omega_n / \lambda \right)^{\frac{r}{r+1}}, \ \lambda > 0;$$
 (7)

(b) Assume that

$$m_{\pi_n \nu}(\lambda) = 0, \ \lambda > A.$$
 (8)

Then

$$m_{L_n[f]\nu}(\lambda) \le A \parallel fw \parallel_{L_{\infty}(\mathbb{R})} \Omega_n/\lambda, \ \lambda > 0.$$
 (9)

Corollary 2

Let w, ν be as in Theorem 1 and assume that we are given $\pi_n, \{t_{jn}\}_{j=1}^n$ for each $n \geq 1$ and

$$\Omega := \sup_{n \ge 1} \sum_{j=1}^{n} \frac{1}{|\pi'_{n} w| (t_{jn})} < \infty.$$
 (10)

(a) If $r < \infty$ and (6) holds for $n \ge 1$, then for $0 , we have for some <math>C_1$ independent of f, n

$$\parallel L_n[f]\nu \parallel_{L_n(\mathbb{R})} \le C_1 \parallel fw \parallel_{L_{\infty}(\mathbb{R})}. \tag{11}$$

(b) If (8) holds for $n \ge 1$, then we have (11) for 0 , as well as

$$\parallel L_n[f]\nu \parallel_{weak(L_1)} \le C_1 \parallel fw \parallel_{L_{\infty}(\mathbb{R})}. \tag{12}$$

Remarks

(a) Note that (6) holds if

$$\|\pi_n \nu\|_{L_r(\mathbb{R})}^r \le A, \ n \ge 1$$

and (8) holds if

$$\|\pi_n\nu\|_{L_{\infty}(\mathbb{R})} \leq A.$$

Of course (6) is a weak L_r condition.

- (b) Under mild additional conditions on w and ν that guarantee density of the polynomials in the relevant spaces, the projection property $L_n[P] = P$, $\deg(P) \leq n 1$, allows us to deduce mean convergence of $L_n[f]$ to f.
- (c) Orthogonal polynomials $\{p_n(u,x)\}_{n=0}^{\infty}$ such as those for generalized Jacobi weights u [4] or the exponential weights u in [2] admit the bound

$$|p_n(u,x)| u^{1/2}(x) \le C \left| 1 - \frac{|x|}{a_n} \right|^{-1/4}, \ x \in [-1,1]$$

for a C independent of n and a suitable choice of a_n . Thus these polynomials admit the bound (6) with r=4. Moreover, if $\{t_{jn}\}$ are the zeros of p_n , then a great deal is known about $p'_n(t_{jn})$, and in particular (10) holds with an appropriate choice of w. More generally, for extended Lagrange interpolation, involving interpolation at the zeros of $S_n p_n$, where S_n is a polynomial of fixed degree, it is easy to verify (10) under mild conditions on S_n .

(d) A result of Shi [7] implies that if (11) holds with C_1 independent of f and n, and if π_n is normalized by the condition

$$\parallel \pi_n \nu \parallel_{L_p(\mathbb{R})} = 1,$$

while the $\{t_{jn}\}$ are all contained in a bounded interval, then (10) holds. Thus in this case (10) is necessary for (11). However, our normalisation (6) or (8) of π_n involves a condition with r > p, so there is a gap.

(e) Of course (10) requires $w(t_{jn}) \neq 0 \forall j, n$. We may weaken (10) to

$$\sup_{n\geq 1}\sum_{j:w\left(t_{jn}\right)\neq 0}\frac{1}{\left|\pi_{n}'w\right|\left(t_{jn}\right)}<\infty$$

if we restrict f by the condition $w(t_{jn}) = 0 \Rightarrow f(t_{jn}) = 0$. In particular this allows us to consider w with compact support even when $\{t_{jn}\}_{j,n}$ is not contained in a bounded interval.

Our proofs rely on a lemma of Loomis [1,p. 129].

Lemma 3

Let $n \geq 1$ and $\{x_j\}_{j=1}^n, \{c_j\}_{j=1}^n \subset \mathbb{R}$. Then for $\lambda > 0$,

$$m\left(\left\{x: \left|\sum_{j=1}^{n} \frac{c_j}{x - x_j}\right| > \lambda\right\}\right) \le \frac{8}{\lambda} \sum_{j=1}^{n} |c_j|.$$

$$(13)$$

Proof

When all $c_j \geq 0$, we have equality in (13) with 8 replaced by 2 [1,p.129]. The general case follows by writing

$$c_j = c_j^+ - c_j^-$$

where $c_j^+ = \max\{0,c_j\},\, c_j^- = -\min\{0,c_j\}$ and noting that

$$\left| \sum_{j=1}^{n} \frac{c_j}{x - x_j} \right| > \lambda \Rightarrow \left| \sum_{j=1}^{n} \frac{c_j^+}{x - x_j} \right| > \frac{\lambda}{2} \text{ or } \left| \sum_{j=1}^{n} \frac{c_j^-}{x - x_j} \right| > \frac{\lambda}{2} \text{ or both.} \quad \Box$$

Proof of Theorem 1

(a) Assume that $r < \infty$ and let $a \in \mathbb{R}, \lambda > 0$. We may assume that

$$|| fw ||_{L_{\infty}(\mathbb{R})} = 1. \tag{14}$$

(The general case follows from the identity $m_{bg}(\lambda) = m_g(\lambda/b)$ for $b, \lambda > 0$). Now

$$(L_n[f]\nu)(x) = (\pi_n \nu)(x) \sum_{j=1}^n \frac{(fw)(t_{jn})}{(\pi'_n w)(t_{jn})(x - t_{jn})}$$

so

$$|L_n[f]\nu|(x) > \lambda$$

implies

$$|\pi_n \nu| (x) > \lambda^a \tag{15}$$

or

$$\left| \sum_{j=1}^{n} \frac{(fw)(t_{jn})}{(\pi'_{n}w)(t_{jn})(x - t_{jn})} \right| > \lambda^{1-a}$$
 (16)

or both. The set of x satisfying (15) has, by (6), measure at most $A\lambda^{-ar}$. The set of x satisfying (16) has by Loomis' Lemma, measure at most

$$\frac{8}{\lambda^{1-a}} \sum_{j=1}^{n} \left| \frac{fw}{\pi'_{n} w} \right| (t_{jn}) \le 8\lambda^{a-1} \Omega_{n}.$$

Now, if $\lambda \neq 1$, we choose a so that

$$A\lambda^{-ar} = 8\lambda^{a-1}\Omega_n \Leftrightarrow a = \frac{1}{r+1} \left[1 - \frac{\log[8\Omega_n/A]}{\log \lambda} \right].$$

Then we obtain

$$m_{L_n[f]v}(\lambda) \le 2A^{\frac{1}{r+1}} \left(8\Omega_n/\lambda\right)^{\frac{r}{r+1}},$$

that is (7) holds. The case $\lambda=1$ follows from continuity properties of Lebesgue measure.

(b) Here we have instead

$$|L_n[f]\nu|(x) > \lambda \Rightarrow \left| \sum_{j=1}^n \frac{(fw)(t_{jn})}{(\pi'_n w)(t_{jn})(x - t_{jn})} \right| > \frac{\lambda}{A}$$

and again (9) follows from Loomis' Lemma. \square

Proof of Corollary 2

(a) We may assume (14). Now by hypothesis, there exists b > 0 such that ν vanishes outside [-b, b]. Thus in addition to (7), we have the estimate

$$m_{L_n[f]\nu}(\lambda) \le 2b, \ \lambda > 0.$$

Then from (2), if 0 , we have

$$\|L_n[f]\nu\|_{L_p(\mathbb{R})}^p \le p\left(\int_0^1 t^{p-1}(2b)dt + 2A^{\frac{1}{r+1}}\left(8\Omega\right)^{\frac{r}{r+1}}\int_1^\infty t^{p-1-\frac{r}{r+1}}dt\right) =: C_1 < \infty.$$

(b) Here trivial modifications of this last estimate allow us to treat 0 , while (9) gives

$$\|L_n[f]\nu\|_{weak(L_1)} = \sup_{\lambda>0} \lambda m_{L_n[f]\nu}(\lambda) \leq C\Omega. \quad \Box$$

We make two final remarks: The proof of Theorem 1 also gives a weak converse Marcinkiewicz-Zygmund inequality. For a given f, define

$$\Omega_n(f) := \sum_{j=1}^n \frac{|fw|(t_{jn})}{|\pi'_n w|(t_{jn})}.$$

Then (7) holds with Ω_n replaced by $\Omega_n(f)$. Moreover, (7) can be reformulated in the following way: If P is a polynomial of degree $\leq n-1$ satisfying

$$|Pw|(t_{jn}) \le 1, \ 1 \le j \le n,$$

then

$$m_{P\nu}(\lambda) \le 2A^{\frac{1}{r+1}} \left(8\Omega_n/\lambda\right)^{\frac{r}{r+1}}, \ \lambda > 0.$$

It would be useful to have more sophisticated estimates for $m_{P\nu}$. For special weights w, ν and points $\{t_{jn}\}$, converse quadrature sum inequalities imply these [4].

References

- C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, New York, 1988.
- [2] A.L. Levin and D.S. Lubinsky, Christoffel Functions and Orthogonal Polynomials for Exponential Weights on [-1,1], Memoirs Amer. Math. Soc., 535(111), 1994.
- [3] G. Mastroianni, Boundedness of the Lagrange Operator in Some Functional Spaces. A Survey, to appear.
- [4] G. Mastroianni and M.G. Russo, Weighted Marcinkiewicz Inequalities and Boundedness of the Lagrange Operator, to appear.
- [5] G. Mastroianni and P. Vertesi, Mean Convergence of Interpolatory Processes on Arbitrary System of Nodes, Acta Sci. Math. (Szeged), 57(1993), 429-441.
- [6] P. Nevai, Mean Convergence of Lagrange Interpolation III, Trans. Amer. Math. Soc., 282(1984), 669-698.
- [7] Y.G. Shi, Mean Convergence of Interpolatory Processes on an Arbitrary System of Nodes, Acta Math. Hungar., 70(1996), 27-38.
- [8] J. Szabados, P. Vertesi, A Survey on Mean Convergence of Interpolatory Processes, J. Comp. Appl. Math., 43(1992), 3-18.