
A SURVEY OF ERDŐS-SZEKERES PRODUCTS

D.S. LUBINSKY,

Abstract. Let {sj}nj=1 be positive integers. In 1959, Erdős and Szekeres
posed a number of problems about the size of polynomials of the form

n∏
j=1

(1− zsj ) ,

where {sj}nj=1 are positive integers. We survey results on these problems and
closely related questions.

Primary 42C05, 11C08; Secondary 30C10 Erdos-Szekeres products, polynomials.

1. The Original Paper

A celebrated short 1959 paper of Erdős and Szekeres [22] posed a number of
problems about the growth or decay of "pure power products"

(1.1) Pn (z) =

n∏
j=1

(1− zsj )

and their norms ‖Pn‖L∞(|z|=1). Here {sj}
n
j=1 are positive integers. This is a gen-

erating function for partitioning integers in a restricted way, and much of the mo-
tivation arises from this connection.
In this section, we shall list the problems stated in the original paper, and report

on progress primarily in subsequent sections. The most well known is the following:

Problem 1
Let

M (s1, s2, ..., sn) =

∥∥∥∥∥∥
n∏
j=1

(1− zsj )

∥∥∥∥∥∥
L∞(|z|=1)

and
f (n) := inf {M (s1, s2, ..., sn) : s1, s2, ..., sn ≥ 1} .

Determine the growth of f (n) as n→∞.
Erdős and Szekeres proved that

(1.2) lim
n→∞

f (n)
1/n

= 1.

They also claimed to prove that f (n) ≥
√
2n, though there are gaps in their proof,

that can be repaired using other methods [13]. Erdős [21, p. 55] later conjectured
that f (n) should grow faster than any power of n.
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The special case where all sj = j,
n∏
j=1

(1− zj),

is often called a Sudler product, after C. Sudler’s 1964 paper [42], where it was
shown that

lim
n→∞

M (1, 2, ..., n)
1/n

= 1.219... > 1.

This is quite a contrast to (1.2). In their paper, Erdős and Szekeres stated that
"it is easy to show that limn→∞M (1, 2, ..., n)

1/n exists and is between 1 and 2."
Of course, in the terminology of basic hypergeometric series, the Sudler product is
(z; z)n. We shall discuss this important special case below.
Erdős and Szekeres used elementary estimates from the theory of diophantine

approximation to show that for a.e. α,

(1.3) lim inf
n→∞

∣∣∣∣∣∣
n∏
j=1

(1− e2πijα)

∣∣∣∣∣∣ = 0.
Hardy and Littlewood earlier obtained an nth root asymptotic (see Section 3).
Erdős and Szekeres stated that perhaps this holds for all α :

Problem 2
Show that for all real α, (1.3) holds.

We shall discuss S. Grepstad, L. Kaltenböck, and M. Neumüller’s surprising
disproof of this [23] below. As a contrast to (1.3), Erdos and Szekeres noted that
for a.e. α,

(1.4) lim sup
n→∞

∣∣∣∣∣∣
n∏
j=1

(1− e2πijα)

∣∣∣∣∣∣ =∞,
and indeed one can choose a sequence of integers n = qk − 1, where qk is a de-
nominator in the continued fraction expansion of α. Of course the lim sup is 0 for
rational α. They suggested that one might deterrmine the rates in the lim sup and
lim inf, for almost all α :

Problem 3

How fast can

∣∣∣∣∣∣
n∏
j=1

(1− e2πijα)

∣∣∣∣∣∣ tend to 0 or ∞ for almost all α?

Without being aware of this problem, the author investigated this issue in [33],
see below. Replacing 1 by z, they also asked:

Problem 4
Is it true that for all α,

(1.5) lim sup
n→∞

∥∥∥∥∥∥
n∏
j=1

(z − e2πijα)

∥∥∥∥∥∥
L∞(|z|=1)

=∞?
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Of course this is now a problem about polynomials in z, which is quite different
in nature. For rational α, (1.5) follows by regarding α as a root of unity. This
problem is related to an older more general one of Erdős, namely that if {zj}∞j=1 is
any sequence on the unit circle,

lim sup
n→∞

∥∥∥∥∥∥
n∏
j=1

(z − zj)

∥∥∥∥∥∥
L∞(|z|=1)

=∞.

This was established by Wagner in 1980 [45], see below. For the corresponding lim
inf, the authors noted that for rational α, the lim inf (and hence the limit) is ∞.
They conjectured:

Problem 5
Is it true that for all irrational α,

lim inf
n→∞

∥∥∥∥∥∥
n∏
j=1

(z − e2πijα)

∥∥∥∥∥∥
L∞(|z|=1)

<∞?

This was established by Avila, Jitomirskaya and Marx [7].
Returning to general choices of {sj}, Erdős and Szekeres pose their final prob-

lems:

Problem 6
Let {sj}∞j=1 be a strictly increasing sequence of positive integers. Is it true that for
almost all α,

lim sup
n→∞

∣∣∣∣∣∣
n∏
j=1

(1− e2πisjα)

∣∣∣∣∣∣ =∞
but

lim inf
n→∞

∣∣∣∣∣∣
n∏
j=1

(1− e2πisjα)

∣∣∣∣∣∣ = 0?
There has been little progress on this.
In Section 2, we discuss progress primarily related to the growth of the sup norm

of the Erdős-Szekeres polynomials
n∏
j=1

(1 − zsj ), namely Problem 1. In Section 3,

we discuss Problems 4 and 5. In Section 4, we discuss Sudler products, Problems
2 and 3. In Section 5, we discuss Problem 6 on pointwise growth of the general
products.
Acknowledgement

The author thanks Christoph Aistleitner and Sigrid Grepstad for providing refer-
ences to recent breakthroughs, that helped bring this survey up to date.

2. The ErdŐs-Szekeres polynomials: Problem 1

Let’s start by discussing progress in the original paper. Erdős and Szekeres
proved (1.2) using some results from diophantine approximation and some special
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polynomials. Assume that m ≥ 2 and
m2 ≤ n < (m+ 1)2 .

They set sj = 1 for j ≤ n − m2 and the remaining {sj} are the integers 2k` for
1 ≤ k ≤ m, 1 ≤ ` ≤ m. So their choice is

Pn (z) = (1− z)n−m
2∏m

k=1

∏m

`=1

(
1− z2

k`
)
.

They note that for |z| ≤ 1, ∣∣∣(1− z)n−m2
∣∣∣ ≤ 2m ≤ 22√n.

To estimate the rest of the terms in Pn, they prove a preliminary result on dio-
phantine approximation. Then they show that for each ε > 0,

‖Pn‖L∞(|z|=1) ≤ C (ε) (1 + ε)
n
,

giving (1.2).
They also claim the lower bound

f (n) := inf {M (s1, s2, ..., sn) : s1, s2,..., sn ≥ 1} ≥
√
2n.

However, their proof has a gap. They assume that for some increasing integers, {aj}
and another distinct set of increasing integers {bj} , (so that there is no intersection
between the {aj} , {bj})

(2.1)
∑
j

zaj −
∑
j

zbj =

n∏
j=1

(1− zsj ) = Pn (z) .

In particular all coeffi cients of powers of z are ±1. Then as the right-hand side has
a zero of multiplicity n at 1, we can differentiate the left-hand side k times and set
z = 1 to deduce (after some manipulation) that∑

j

akj =
∑
j

bkj , k = 0, 1, ..., n− 1.

Yes, for those familiar with the topic, this is the Prouhet-Tarry-Escott problem
[17], [35], [40]. They then conclude that at least n of the {aj} and at least n of
the {bj} are non-zero, so that at least 2n Maclaurin series coeffi cients of Pn (z) are
non-zero. Then Parseval’s inequality gives

1

2π

∫ π

−π

∣∣Pn (eit)∣∣2 dt =∑
j

|aj |2 +
∑
j

|bj |2 ≥ 2n,

giving f (n) ≥
√
2n.

However, the identity (2.1) is simply not true for all n, as very often there are
coeffi cients other than ±1. For example,

4∏
j=1

(
1− zj

)
= 1− z − z2 + 2z5 − z8 − z9 + z10.

This gap was repaired in [13]. Since Pn has a zero of order n at 1, and is not
identically 0, one can show it has at least n non-zero coeffi cients. Then

1

2π

∫ π

−π

∣∣Pn (eit)∣∣2 dt = N∑
k=0

|ak|2 ≥ n.
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Since all zeros are on the unit circle, a result of O’Hara and Rodriguez [38, Corollary
1, p. 333] shows that

‖Pn‖2L∞(|z|=1) ≥ 2
N∑
k=0

|ak|2 ≥ 2n

so that indeed
f (n) ≥

√
2n.

If the original Erdős-Szekeres proof could be fixed, the O’Hara Rodriguez bound
would give f (n) ≥ 2

√
n.

As noted above, Erdős and Szekeres remarked that one can prove that

lim
n→∞

∥∥∥∏n

j=1

(
1− zj

)∥∥∥1/n
L∞(|z|=1)

exists and assumes a value in (1, 2). This was made precise in a 1964 paper of
Cuthbert Sudler, who seemed unaware of [22]. He proved that

logM (1, 2, ...n) = log
∥∥∥∏n

j=1

(
1− zj

)∥∥∥
L∞(|z|=1)

= Kn+O (log n) ,(2.2)

where

K = max

{
1

w

∫ w

0

log |2 sinπt| dt : w ∈
(
1

2
, 1

)}
= 0.19861... .

Sudler also considered the coeffi cients in the Maclaurin series∏n

j=1

(
1− zj

)
=
∑
j

an,jz
j

and formed
An = max

j
|an,j | .

He noted that (2.2) also holds with An replacing M (1, 2, ..., n), referring to earlier
work of Nicol, Vandiver, and Motzkin. He conjectured the ratio asymptotic

lim
n→∞

An+1
An

= K.

E.M. Wright proved in 1964 [46] not only this ratio asymptotic, but the stronger
result

An =
B

n
eKn (1 + o (1)) ,

where

B = 2eK
(
1− 1

4
e2K

)−1/4
= 2.7424...

In a 2013 paper, Bell gave precise asymptotics for the Lp norm of
∏n
j=1

(
1− zj

)
[9].
The first improved estimate for f (n) was given by Atkinson in 1961 [6]. In a

short elegant paper, he showed that

log f (n) ≤ n1/2
(
1

2
log n+ 4 log 2

)
,
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by relating the Erdős-Szekeres problem to estimates of Fourier series, using

log
∣∣1− eiθ∣∣ = − ∞∑

j=1

cos jθ

j
.

Some twenty years later, in 1982, Odlyzko [37] proved that

f (n) = exp
(
O
(
n1/3 (log n)

4/3
))

,

using random trigonometric polynomials, and estimates of cosine polynomials with
nonnegative coeffi cients. Subsequently, Kolountzakis [31] also used random trigono-
metric polynomials, and improved Odlyzko’s bound to

f (n) = exp
(
O
(
n1/3 (log n)

))
.

Whereas Odlyzko’s {sj} need not be distinct, Kolountzakis ensured that
1 ≤ s1 < s2 < s3 < ... < sn < 2n+O

(√
n
)
.

A major breakthrough came with the 1996 estimate of Belov and Konyagin [12]

f (n) = exp
(
O
(
(log n)

4
))

,

a consequence of their work on nonnegative trigonometric polynomials. They con-
sidered, as did Atkinson and Odlyzko earlier, trigonometric polynomials

∑∞
k=0 αk cos (kx)

that are nonnegative on the real line, and for which α1, α2, ... are nonnegative in-
tegers {αk} such that

∞∑
k=1

αk = n.

Let KZ (n) denote the infimum of the constant coeffi cient α0 of such trigonometric
polynomials. In a powerful, long, technical paper, they show that

KZ (n) = O
(
(log n)

3
)

and then apply Odlyzko’s observation that

ln f (n) < (1 + log n)KZ (n) .

There has not been any improvement on this result.
Nor has there been an improvement on the lower bound f (n) ≥

√
2n in general.

Maltby [34], [35] obtained some improvements for specific values of n, focusing on
the `1 norm of the coeffi cients, and using an algorithm to search for optimal {sj}.
Thus if

Pn (z) =
∑
j

an,jz
j ,

he studied the size of
‖Pn‖1 =

∑
j

|an,j | ,

and also listed

‖Pn‖2 =
√∑

j

|an,j |2.

For example for n = 13, it is known [17, p. 104] that the smallest ‖Pn‖1 is 44, and
is attained for

{sj} = {1, 2, 3, 4, 5, 7, 9, 11, 13, 16, 17, 19, 23}.
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Optimal choices are known for all n up to 13. A table is given in a beautiful book
of the late great Peter Borwein [17, p. 104]. Maltby listed the minimal known (in
other words not yet proven minimal) for n up to 70 [34, pp. 240-241].
There have also been several results that treat {sj} with additional restrictions.

For example, Peter Borwein [16] showed that if none of the {sj} are divisible by a
given prime p,

M (s1, s2, ..., sn) ≥ exp
(
log p

p− 1n
)
.

Moreover, when p = 2, 3, 5, 7, 11, 13, the minimum of such products with no sj
divisible by p, achieve this rate in a precise form.
Bell, Borwein, and Richmond [10] obtained both asymptotic upper and lower

bounds. They modified Atkinson’s method, and cleverly used Vandermonde deter-
minants, showing that if {`n} is an increasing sequence of integers, and we take
{s1, s2, ..., sn} to be the first n of

{`1 − `0, `2 − `1, `2 − `0, `3 − `2, `3 − `1, `3 − `0, ...} ,

then

M (s1, s2, ..., sn) ≤ (32n)
√
n/8

.

They also showed that if L is a positive integer,

lim inf
n→∞

M
(
1, 2L, 3L, ..., nL

)1/n
> 1,

Moreover, if f (x) is a quadratic polynomial such that {f (n)} is an increasing
sequence of positive integers, then

lim inf
n→∞

M (f (1) , f (2) , f (3) , ..., f (n))
1/n

> 1.

All these results were proved by careful estimation of the products at carefully
chosen points.
Bourgain and Chang [19] showed that we can choose {s1, s2, ..., sn} ⊂ {1, 2, ..., N}

with n/N � 1/2 such that

M (s1, s2, ..., sn) ≤ exp
(
O
(√

n
√
log n log log n

))
but if τ > 0 is small enough and n > (1− τ)N , then for all {s1, s2, ..., sn} ⊂
{1, 2, ..., N} ,

M (s1, s2, ..., sn) > exp (τn) .

They use probabilistic methods and careful estimation of trigonometric sums.
The author and research students obtained in 2021 [13] lower bounds, using the

Poisson integral of log |Pn| that are useful when the {sj} do not grow too fast. Let
1 ≤ s1 ≤ s2 ≤ ... ≤ sn and 1 ≤ L ≤ n. Then

(2.3) M (s1, s2, ..., sn)∞ ≥ exp
(
1

2e

L

(s1s2...sL)
1/L

)
.

For example, if for some r ∈ (0, 1), we have sj ≤ j
1+(log j)2 , for 1 ≤ j ≤ [rn], then

this gives

M (s1, s2, ..., sn) ≥ exp
(
1

2
(log [rn])

2
(1 + o (1))

)
.
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A second result in [13], proved using Kellogg’s extension of the Hausdorff-Young
inequalities for coeffi cients of Fourier series, works well for rapidly growing or sepa-
rated {sj}: let Ik =

{
2k−1, 2k−1 + 1, ..., 2k − 1

}
for k ≥ 1. Let 1 ≤ s1 ≤ s2 ≤ ... ≤

sn. Assume that Ik contains `k ≥ 0 of the {sj}nj=1 for k ≥ 1. Let 1 < p ≤ 2 and
ε = 2

p (p− 1). Then for n ≥ 2,

(2.4) M (s1, s2, ..., sn) ≥ exp
(
C

{ ∑∞
k=1 `

ε
k

(n log n)
ε

}p/2)
.

Here C depends on p but is independent of n and the {sj}.
As an example, let B > 2 and

sj =
[
j (log j)

B
]
, j ≥ 1.

Then one can use (2.4) to show that for some C, δ > 0,

M (s1, s2, ..., sn) ≥ exp(C (log n)1+δ).
In a 2022 paper [14], the author and research students explored the average and
variance of Lp norms of Erdős-Szekeres polynomials. Here the average is taken
over all s1, s2, ..., sn ∈ [1,M ] and we then let M →∞. Unsurprisingly, the average
behavior is geometric growth.
Clearly, there is a lot of scope for work on both upper and lower bounds. Problem

1 is very far from solved.

3. Generalized Products: Problems 4 and 5

As noted above, Problem 4 is a special case of an older problem of Erdős, on
growth of sequences of polynomials with all zeros {zj} on the unit circle. Recall
this asks if

lim sup
n→∞

∥∥∥∥∥∥
n∏
j=1

(z − zj)

∥∥∥∥∥∥
L∞(|z|=1)

=∞.

G. Wagner [45] proved in 1980 that for some δ > 0, independent of the sequence
{zj} , and infinitely many n,∥∥∥∥∥∥

n∏
j=1

(z − zj)

∥∥∥∥∥∥
L∞(|z|=1)

≥ (log n)δ.

In a 1991 paper, J. Beck [8] proved that for some c > 0,

∥∥∥∥∥∥
n∏
j=1

(z − zj)

∥∥∥∥∥∥
L∞(|z|=1)

grows at least as fast as nc, for infinitely many n. In the other direction, Beck
showed that there is a sequence {zj} such that the nth sup is bounded by n+1 for
all n. While Beck’s construction of these slowly growing polynomials uses roots of
unity, it does not resolve Problem 1 of Erdős-Szekeres as the polynomials have a
different form. An L2 analogue of Wagner’s lower bound was recently established
by Steinerberger [41]: for infinitely many n,∥∥∥∥∥∥log

∣∣∣∣∣∣
n∏
j=1

(z − zj)

∣∣∣∣∣∣
∥∥∥∥∥∥
2

≥ C
√
log n.
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The solution to Problem 5 is much more recent: in a 2017 paper on almost
Matthieu operators, Avila, Jitomirskaya, and Marx [7] showed that Problem 5 has
a positive solution: for all irrational α,

(3.1) lim inf
n→∞

∥∥∥∥∥∥
n∏
j=1

(z − e2πijα)

∥∥∥∥∥∥
L∞(|z|=1)

<∞.

Moreover, they specified the subsequence of integers for which (3.1) is true - one can
choose n = q`−1, where {q`} are the denominators in convergents to the continued
fraction for α.

4. Sudler Products: Problems 2 and 3

The term Sudler product for

Sn (α) =

n∏
j=1

(1− e2πijα)

now seems to be fairly common. I personally feel that it could just as well be
called a Sudler-Wright product, or just the q−Pochhammer symbol (q; q)n with
q = e2πiα. Whatever the name, it certainly has generated a lot of research, and has
many connections. We shall use the notation Sn (α) throughout this section.
Possibly the earliest analytic estimate of these products appeared in a 1946 paper

of Hardy and Littlewood [27], the twenty fourth (!) in a series of papers on series.
Using the identity

(4.1)
∞∑
n=0

zn

(q; q)n
= exp

( ∞∑
n=1

zn

n (1− qn)

)
,

and the Cauchy-Hadamard formula for the radius of convergence of a power series,
they showed that

lim inf
n→∞

|(q; q)n|
1/n

= lim inf
n→∞

|1− qn|1/n .

Diophantine approximation then immediately yields that for

q = e2πiα

and a.e. α ∈ [0, 1], we have

lim inf
n→∞

|Sn (α)|1/n = lim inf
n→∞

|(q; q)n|
1/n

= 1.

By choosing suitable α, one may ensure that this last lim inf takes any values
between 0 and 1. Related radii of convergence were explored, for example in [20],
[32], [39]. In particular, Petruska proved in his 1992 paper that for suitable A =
e2πiβ and q = e2πiα,

lim sup
n→∞

∣∣∣∣∣∣
n∏
j=1

(
A− qj

)∣∣∣∣∣∣
1/n

may take any value in [0, 1].
The author began to look for finer estimates of (q; q)n as part of a project to

resolve the Baker-Gammel-Wills Conjecture on Padé approximants. Without being
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really aware of Problem 3, he established a number of results in a 1999 paper [33].
Among the tools, were the continued fraction expansion,

(4.2) α =
1|
|a1

+
1|
|a2

+
1|
|a3

+ ...,

more specifically, the convergents

pk
qk
=
1|
|a1

+
1|
|a2

+
1|
|a3

+ ...
1|
|ak

, k ≥ 1,

the Ostrowski representation of positive integers n in terms of the denominators
{qk} of the convergents, and careful estimation of trigonometric sums using methods
that are quite common in discrepancy theory. In particular, he showed that given
ε > 0, for a.e. α, we have

|log |Sn (α)|| = O
(
(log n) (log log n)

1+ε
)
, n→∞,

but for a.e. α,

lim sup
n→∞

(
log

1

|Sn (α)|

)
1

(log n) (log log n)
=∞.

(A remarkable recent paper of Bence Borda [15] contains some improvements, see
below.)
For irrational α, it was shown that

lim sup
n→∞

log |Sn (α)|
log n

≥ 1.

Of course, this also gives a positive solution to Problem 4, with a rate, but only for
irrational α. As noted above, Problem 4 is trivial for rational α.
There were also other results depending on the size of the continued fraction

coeffi cients {aj} : if
sup
j
aj =∞,

then

(4.3) lim inf
n→∞

|Sn (α)| = 0.

Thus Problem 2 is resolved for the case of α having a continued fraction with
unbounded entries. On the other hand, if the entries in the continued fraction are
bounded, that is,

sup
j
aj <∞,

then it was shown that
|log |Sn (α)|| = O (log n) ,

so that for some positive constants C1, C2,

(4.4) n−C1 ≤ |Sn (α)| ≤ nC2 .
It was also stated there that the proofs show that there is an integer K such that if

aj ≥ K for infinitely many j,

then (4.3) is true, and it was stated that "we are certain that it is true in general".
The question of the smallest C1 in (4.4) was raised.
It is always dangerous to be certain about something that has not been proven.

The first inklings that (4.3) might not always be true appear in a 2016 paper of
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Verscheuren and Mestel [44]. That paper also contains an interesting review of
connections to dynamical systems, including work on generalizations of the Sudler
product, due for example to Knill and Lesieutre [30]. Let

α =

√
5− 1
2

=
1|
|1 +

1|
|1 +

1|
|1 + ...

("the golden rotation number" or "golden section ratio") and {Fn} be the Fibonacci
numbers. These are also the denominators in the continued fraction for α. Ver-
scheuren and Mestel proved that

lim
n→∞

|SFn (α)| = c = 2.407...

and

lim
n→∞

|SFn−1 (α)|
Fn

=
c
√
5

2π
.

They conjectured that the first result can be extended to all quadratic irrationals
α, provided we replace the Fibonacci numbers by the denominators {qk} of the
continued fraction for α.
This conjecture was verified by Grepstad and Neumüller in a 2018 paper [24].

They consider α with periodic of period ` continued fraction entries a1, a2, ...a`. As
usual, {qj} are the denominators in the continued fraction for α. They prove that
there exist positive constants Ck, k = 0, 1, 2, ..., `− 1, such that

lim
n→∞

∣∣Sq`n+k (α)∣∣ = Ck.

They note that this offers substantial evidence that (4.3) might be false for quadratic
irrationals.
Grepstad, Kaltenböck, and Neumüller turned this evidence into a dramatic

breakthrough, resolving the 60 year old problem in a 2019 paper [23]:

lim inf
n→∞

∣∣∣∣∣Sn
(√

5− 1
2

)∣∣∣∣∣ > 0.
Their proof relies on the earlier result of Verscheuren and Mestel. (It was also
independently established in the unpublished thesis of Verscheuren [43]). They use
the Ostrowki representation in the special case of qn = Fn, which is then called the
Zeckendorf representation. They make a number of interesting conjectures, such as∣∣∣∣∣SFn−1

(√
5− 1
2

)∣∣∣∣∣ ≤
∣∣∣∣∣Sm

(√
5− 1
2

)∣∣∣∣∣ ≤
∣∣∣∣∣SFn−1

(√
5− 1
2

)∣∣∣∣∣
if

Fn−1 ≤ m ≤ Fn − 1.
In a subsequent paper [25], they used results of the author’s 1999 paper to rigorously
prove that there is a thereshhold K such that if infinitely many entries aj in the
continued fraction (4.2) satisfy aj ≥ K, then (4.3) is true. They also conjecture
that if the continued fraction has period 1, so

(4.5) α =
1|
|a +

1|
|a +

1|
|a + ... ,

with a ≥ 6, then (4.3) is true.
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This was verified in another breakthrough, in the 2020 paper of Aistleitner,
Technau, and Zafeiropoulos [5]: they consider quadratic irrationals of the form
(4.5). They prove the remarkable result that if a ≤ 5, then

(4.6) lim inf
n→∞

|Sn (α)| > 0 and lim sup
n→∞

|Sn (α)|
n

<∞;

On the other hand if a ≥ 6, then

lim inf
n→∞

|Sn (α)| = 0 and lim sup
n→∞

|Sn (α)|
n

=∞.

They have to separately consider the case a = 6. They noted that their proofs show
more for a ≥ 6, namely

lim inf
n→∞

log |Sn (α)|
log n

< 0 and lim sup
n→∞

log |Sn (α)|
log n

> 1.

They pose a number of problems, such as when the Sudler product grows at most
linearly; and in particular, under what conditions on distinct integers a, b, is the
growth at most linear for the two periodic continued fraction

α =
1|
|a +

1|
|b +

1|
|a +

1|
|b +

1|
|a... .

In a 2022 paper, Hauke [28] determined the exact value of the lim inf and lim
sup in (4.6) for a = 1, 2, 3, 4, 5. More precisely, Hauke proved that

lim inf
n→∞

|Sn (α)| = lim
k→∞

|Sqk (α)| = Ca

lim sup
n→∞

|Sn (α)|
n

= lim
k→∞

|Sqk−1 (α)|
qk − 1

=

√
a2 + 1

2π
Ca,

where, with {} denoting fractional part,

Ca =
2π√
a2 + 1

∏∞

n=1

((
1−
{nα} − 1

2

n
√
a2 + 4

)2
− 1(

2n
√
a2 + 4

)2
)
.

He also showed that Sn (α) is maximal if n = qk − 1, and minimal when n = 1.
Several of the above papers use perturbed Sudler products, and the techniques

and proofs are not for the faint hearted! A search for simplifying principles that
might offer a general approach is welcome, and a recent paper of Aistleitner and
Borda [1] offers some hope in this regard. They prove a reflection principle and a
transfer principle. The former is the observation that if a, b are coprime positive
integers, and 0 ≤ N < b, then

logSN (a/b) + logSb−N−1 (a/b) = log b.

The latter is the following estimate: if

α = a0 +
1|
|a1

+
1|
|a2

+
1|
|a3

+ ...

has convergents
{
pm
qm

}
, then for k ≥ 1, 0 ≤ N < qk,∣∣∣∣log |SN (α)| − logSN (pkqk

)∣∣∣∣ ≤ C log(1 + max1≤`≤k a`)ak+1
.
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The constant C is a universal constant. As a consequence they relate the upper
and lower constants in (4.4). In particular for quadratic irrationals of period 1 with
a as in (4.5), they show that

C2 = C1 + 1 =
V ol (41)

4π

a

log a+
√
a2+1
2

+O (1) ,

where

V ol (41) = 4π

∫ 5/6

0

log (2 sinπx) dx = 2.02988...

is the hyperbolic volume of the complement of the figure eight knot(!). They also
use their principle to show that when the continued fraction coeffi cients {aj} are
bounded,

lim inf
n→∞

|Sn (α)| = 0 iff lim sup
n→∞

|Sn (α)|
n

=∞

Can one extend the cutoff in the result of 6 in the result of Aistleitner, Technau,
and Zafeiropoulos to general quadratic irrationals? A recent paper of Grepstad,
Neumüller, and Zafeiropoulos [26] establishes that for quadratic irrationals whose
continued fraction is periodic of length `, so that

α =
1|
|b1
+
1|
|b2
+ ...

1|
|bj
+
1|
|a1

+

(
1|
|a2

+ ...
1|
|a`

)
then as long as maxj aj ≥ 23, we have

(4.7) lim inf
n→∞

|Sn (α)| = 0 and lim sup
n→∞

|Sn (α)|
n

=∞.

They again conjecture that maxj aj ≥ 6 should suffi ce.
This was resolved as partly true and partly false in yet another recent break-

through paper of Hauke [29]. He proved that if α is an arbitrary irrational with
continued fraction entries {aj} satisfying

lim sup
j→∞

aj ≥ 7,

then (4.7) holds. On the other hand, the conjecture is false for

α =
1|
|6 +

1|
|5 +

1|
|5 ...

for which

lim inf
n→∞

|Sn (α)| > 0 and lim sup
n→∞

|Sn (α)|
n

<∞.

Thus the case where the largest entry is 6 is still intriguing. Hauke notes that
the length of the period in the continued fraction of the quadratic irrational is a
determining factor in the cutoff of lim supj→∞ aj for (4.7) to hold. When the length
is 1 or 2, the cutoff is 6, but for length 3, the cutoff is 7. He conjectures that the
cutoff is 7 for length ` ≥ 4, with an example being provided by

α =
1|
|6 +

1|
|5 +

1|
|5 ...

1|
|5

`−1 times

.

A recent paper of Neumüller [36] investigates subsequences of {Sn (α)}. In par-
ticular, when the continued fraction coeffi cients {aj} are bounded, he shows that
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{Sqn (α)}n≥1 is bounded above and below by positive constants independent of n.
When the coeffi cients are unbounded, a precise rate of decay is given for Sqn (α),
involving the digits in Ostrowski expansions. Aistleitner and Borda [2] give precise
expressions for sums of powers of |Sn (α)| and max1≤n≤m |Sn (a)| .
It is fitting to end a discussion of the very diffi cult and deep results above by

mentioning a remarkable central limit theorem, concentration result, and lower
bound of Borda [15]: if α is given by (4.5), then for m ≥ 3 and real t,

1

m
#

{
1 ≤ n ≤ m :

logSn (α)− 1
2 log n

σ (α)
√
log n

≤ t
}
=

1√
2π

∫ t

−∞
e−x

2/2dx+O

(
(log logm)

2

(logm)
1/6

)
.

Here σ (α) is an explicitly computable constant. Moreover, for irrational α with
bounded continued fraction entries {aj}, there is a concentration law of the form

1

m
#
{
1 ≤ n ≤ m : e−t

√
log 2n ≤ Sn (α) /

√
n ≤ et

√
log 2n

}
= 1−O

(
t2
)
.

In addition, for a.e. α,

lim inf
m→∞

max1≤n≤m logSn (α)

(log n) (log log n)
=
12

π2

∫ 5/6

0

log |2 sinπx| dx.

Note that this improves for a.e. α, the lower bounds from the author’s 1999 paper.
Given the complexity of both the results and proofs above, I am tempted to

chuck out the hope that by exploiting the original power series identity (4.1), one
might obtain a simpler approach, for at least some basic results. What is clear is
that researchers have discovered ever deeper and more profound results, especially
in recent years.

5. Problem 6

As one might expect, when Sudler products are not fully understood, far less is
known about ∣∣∣∏n

j=1

(
1− e2πisjα

)∣∣∣ .
In the case where sj = 2j , there is a powerful result of Aistleitner, Hofer, and
Larcher [3]. Let ε > 0. Then for a.e. α ∈ (0, 1), we have for large enough n,∣∣∣∏n

j=1

(
1− e2πi2

jα
)∣∣∣ ≤ exp((π + ε)√n log log n)

while for infinitely many n,∣∣∣∏n

j=1

(
1− e2πi2

jα
)∣∣∣ ≥ exp((π − ε)√n log log n) .

The proofs are probabilistic in nature. In a 2018 paper, Aistleitner, Larcher, Pil-
lichshammer, Saad Eddin, and Tichy [4] consider random products∣∣∣∏n

j=1

(
1− e2πixj

)∣∣∣ ,
where the {xj} are uniformly distributed in [0, 1]. A special case of their results
has relevance to Problem 6: let the coeffi cients in the continued fraction expansion
of α be bounded. Let {ξn} be a sequence of i.i.d. {0, 1} valued random variables
with mean 1

2 . This induces a random sequence {sk} as the sequence of numbers n
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with ξn = 1, sorted in increasing order. Then for all ε > 0, one has almost surely,
for all large enough n,∣∣∣∏n

j=1

(
1− e2πisjα

)∣∣∣ ≤ exp(( π√
12
+ ε

)√
n log log n

)
;

while infinitely often,∣∣∣∏n

j=1

(
1− e2πisjα

)∣∣∣ ≥ exp(( π√
12
− ε
)√

n log log n

)
.

One can also interpret results on uniform distribution of {sjα} as providing some
limited insight into Problem 6.

6. Conclusion

Almost 65 years after its publication, the problems posed by Erdős and Szekeres
continue to inspire arduous and deep research. Clearly a lot of work remains to be
done, especially on Problems 1, 3 and 6.
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