THE EFFECT OF TWO EXTERIOR MASSPOINTS ON BOUNDS
FOR ORTHOGONAL POLYNOMIALS

D. S. LUBINSKY

ABSTRACT. Let v be a positive measure supported on [—1, 1], with infinitely
many points in its support. Let {pn (v,x)},~q be its sequence of orthonormal
polynomials. Suppose we add masspoints at 7, s with r > 1, |s| > 1,and r # s,
giving a new measure p = v+ Md, + Nds. How much larger can |pn (i, 0)| be
than |pp (v,0)]|? We study this question for symmetric measures v, and obtain
bounds that are uniform in n, M, N,r,s. In an earlier paper, we studied the
case where r = 1, s = —1, and investigated asymptotics.

Research supported by NSF grant DMS1800251

1. RESULTS

Let p be a finite positive Borel measure on the real line with infinitely many
points in its support, and all finite moments

/tjdu(t),j:&l,?,... )
Then we may define orthonormal polynomials
Pr (1,2) = 7 () 2" + ooy 7, (1) > 0,

n=0,1,2,... satisfying the orthonormality conditions

/ P (12 2) o (1) i () = Grm.

The nth reproducing kernel for p is

n—1

K, (/J,,Ji,t) = ij (sz) pj (/”” t) =
=0

Tn—1 (/f") Pn (.U'v l‘) Pn—1 (ﬂv t) — Pn—1 (,u, -73) Pn—1 (,U,, t)
n T —1

The three term recurrence relation has the form

(.23 — by (M))pn (/’L’ .73) = Qp+1 (M) Pn+1 (Ma -T) + an (M) Pn—1 (,u7 37) 5

where y
n—1
. (1) -
Note that when g is symmetric about 0, then b, (1) = 0.
A central problem in the theory of orthonormal polynomials is to establish
bounds on p, (i, z). Indeed, one of the most celebrated questions in this subject
is the Steklov Conjecture, posed in 1920 and solved by E. A. Rakhmanov in 1979

an (1)
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[16], [17]. Steklov conjectured that if p has support [—1,1], and is absolutely con-
tinuous there, while u is bounded below, then {p, (k, J})}nzo is uniformly bounded
n [—1,1], that is

sup sup |p, (u, )| < 0.
n>0ze[—1,1]

Rakhmanov showed that Steklov’s conjecture is false, and in fact, given € > 0, one
can find a measure satisfying its hypotheses such that for infinitely many n,

pn (11,0)] > Cn'/27<,

There have since been a host of developments, due to amongst others, Ambroladze,
Aptekarev, Denissov, Rush, and Tulyakov. In particular, Aptekarev, Denisov and
Tulyakov [3] showed that |p, (1,0)| may grow faster than n'/?/e,, where {¢,} is
any sequence with limit 0, and this is the best one can aim for. Ambroladze showed
[1] that even if u' is continuous and satisfies some weak smoothness condition,
Steklov’s conjecture may still be false.

What about positive results? Most uniform bounds on orthonormal polynomials
are consequences of much deeper asymptotics for orthonormal polynomials. Per-
haps the most general result for measures supported on [—1, 1] is that of Badkov
[5]. He proved that if u satisfies Szeg8’s condition

! log p (x)

-1V 1-— $2

and ' satisfies a local Dini condition, that is in some interval [a,b] C (—1,1), the
modulus of continuity

w (8) =sup {|p’ (s) — p/ (¥)] : s,t € [a,b] and |s —t| <6},8 >0

1
/ L(t)dt<oo,
0 t

then the corresponding orthonormal polynomials are uniformly bounded in com-
pact subsets of (a,b), and admit local Szegb asymptotics. For non-Szegd weights,
Rakhmanov [18] showed that orthogonal polynomials for Dini smooth weights on
the unit circle admit uniform bounds. For exponential weights, supported on finite
or infinite intervals, Eli Levin and the author established [12] global bounds, using
extensions of a technique that goes back to Stan Bonan, a student of Paul Nevai.
In many of these results, the bounds are then superseded by asymptotics. See [§]
for further developments.

In a recent paper, we investigated how adding masspoints at +1 can increase
the size of the orthonormal polynomial at the origin. Consider a fixed positive
measure v supported on [—1, 1] with infinitely many points in its support, and that
is symmetric about 0, so that v ([—-b, —a]) = v ([a,b]) for all [a,b] C [-1,1]. Let
M (v) denote the class of all measures

pw=v+Méb +N§_,

dr > —00

satisfies

where M, N > 0. Also let
v, = K,w1,1)-K,(v,-1,1);
Vi K,(v,1,)+ K, (v,-1,1).

—~

We proved:
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Theorem A

Let v be a positive measure with support in [—1,1] and with infinitely many points
in its support. Assume also that v is symmetric, so that v ([—b, —a]) = v ([a, b]) for
all subintervals [a,b] of [—1,1]. Let n > 2 be even. Then

sup (pn (i 0)>2 = max{ Uy }
peM(v) \Pn (v,0) Vi Va1

We deduced:

Corollary B
Assume in addition to the hypotheses of Theorem 1.1, that v lies in the Nevai class,
so that the recurrence coefficients satisfy

(1.1) lim a, (v) = %; lim b, (v) = 0.

n—oo n—oo

2
lim sup (pn(,u,())) =1.
=0 \ peM(v) \Pn (v,0)

Further more detailed results were established in [13], with precise asymptotics for
ultraspherical weights.

In this paper, we consider what happens when we add masspoints at two arbi-
trary points exterior to (—1,1). We prove:

Then

Theorem 1
Let v be a positive measure with support in [—1,1] and with infinitely many points
in its support. Assume also that v is symmetric, so that v ([-b,—al]) = v ([a,b]) for
all subintervals [a,b] of [—1,1]. Let n > 2 be even. Let M,N >0, r > 1,5 < —1,
and

w=v—+ Md.+ Ndbs.

Then
pn (1,0)
Dn (I/ 0)

For the case r, s > 1, we prove:

<1+\/W7” L) /122 ().

Tn Yn—1

Theorem 2
Assume the hypotheses of Theorem 1, except that we let r,s > 1. Then

<1+\F7” 1(y)/M(y).

Tn—1

pn (1,0)
D (y 0)

Remark
If 1 belongs to the Nevai class, then (1.1) holds and Theorem 1 and gives bounds
that are independent of n, M, N,r s. However, much less is needed. Since the
support is [—1,1], 7" L (v) < 1 so we need :;L’f (v) to be bounded below by a
positive constant. ThlS is true if ? "

Thus we have an explicit bound that does not depend on the size of the mass-
points, nor their location. This raises the interesting question of bounds for more
exterior masspoints. We prove the theorems in Section 2.
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In the sequel C,C1,Cs, ... denote constants independent of n,z,t. The same
symbol does not necessarily denote the same constant in different occurences.

2. THE BASIC IDENTITY
Throughout this section, we let M, N >0 and r > 1, |s| > 1,s # r, and
(2.1) pw=v+ M + Nis.

We assume that v is a symmetric measure supported on [—1,1]. We fix even n > 2.
We let

_ Pn (V,S) . _ Tn—1 pnilbw .
| K,(w,rr) —K,(vmrs) |
(2:3) L= [ -K, (v,r,8) K, (v,s,5) |’
N 0
(2.4) B= [ 0 } + MNL;
(2.5) W =detL =K, (v,s,8) Ky (v,r,1) — K (v, 5,7)°;
(2.6) d=1+ MK, (v,r,r)+ NK,, (v,s,s) + MNW;
and
1
2.7 C=-B.
2.) !

We prove the following identity. For the case r = 1,s = —1, it appeared in [13].
Various identities of this type have been established for adding the effect of mass-
points and we are not sure it is new. Nevertheless, we provide a derivation for the
form we need.

Theorem 2.1

(2.8) (pn (u,0)>2 {1-xTcy)?

pn(v,0)) {1+ XTCX}'
We begin the proof with the following

Lemma 2.2

(a) Let

. _ )
(2.9) n—1(Y) = pn (1, y) , (V)pn( Y);
(210) A= 1 + MK” (V7T7 T) _MKn (erv 8)

-NK, (v,r,8) 14+ NK,(v,s,s)
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Then
P (1Y)
_ Tn (:u') v l —NK, (u,y,s) !
e {p"( 03 S | AX}'
(b)
Yo (1)) 1 N 0 _
(2.12) (% M) {1+ gXTAT { 0 M } X} =1.
Proof
(a) Using orthogonality, we see that
1
maa) = [ Kl tme @ dr()
1
= [ Kt Gt v )
= *MKn (V,y,T)Pn (IU,,T’) 7NK77, (Vayas)pn (:U"S)'
(2.13)

Taking y = s and y = r, gives

Do (1, 8) — ZI" Eg)pn (v,8) = —MK, (v,s,7) pn (1t,7) — NK,, (v, 8,8) pn (14, 5) ;
oo ) = 22 (00 = M (01,7) o (1) = N Ky (0,7,5) i (105):

)
and gathering the terms involving py, (14, 7), pn (14, ) gives the matrix equation
(2.14)

s e | =R s |

The determinant d of the matrix is
d = (14+NK,(v,s,5)(1+MK, (v,rr))—MNK, (v,sr)’
1+ MK, (v,r,r)+ NK, (v,s,s) + MNW.

Solving the matrix equation (2.14) gives

P (1, 8)
[ Pn (p1,7) ]
_ ’7n(/“‘)1|: 1+MK7L(V’T’T) _MK7L(V7T7S) :| |:pn(l/75) :|
v, (V) d —-NK, (v,r,s) 1+ NK, (v,s,s) pn (v, 1)
@1 [ pe(vys)
- 2G|
From (2.13) and this last identity,
Tn-1(y) = pn(py) — 3" Egpn v,9)
. 'Yn (ﬂ)l _NKn (V’yvs) g Pn (V,S)
- i i | AL |
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Then (2.11) follows.
b) We obtain equations for 224 in two ways: from the definition (2.9) of 7, and
Y (V) Y

1
/ Ty (y)dv ()

[ -a(20) ()

= lfMpn (/1‘7T)2 7an (u’S)Q - (

orthogonality,

Also, from (2.13),

/_ 11 Ty (y) dv (y)

/ (=NK, (v,y,8)pn (4, 8) = MK, (v,y,7) pn (u,r))2 dv (y)

-1
= N2p$1 (1, 8) Ky (v, 8,8) + MZpi (1) Ky (v, 1, 7) + 2M Ny, (1, 8) pr (1, 7) K, (v, 7, 8)

2
Then using the last two equations and solving for 1 — (1"—%53) ,
N (% (u))2
Tn (V)
= 2 (s {N+N2K (v,s,s }+pn T {MJrM K, (v, 7’7’)}
+2Man ,u, r) K, (v,r,s)
_ pn /1'7 [ 1+NK71(V7S)8) MKn(I/,S,T') pn(,uvs)
o L NKn(l/,S,’I") 1+MKn(VaTar) pn(luﬂr)

fagal H Sl

Using
pr e
gives
() T
- 38 (L )T i)
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Proof of Theorem 2.1
Setting y = 0, and using p,—1 (v,0) = 0, the Christoffel-Darboux formula gives

_’Yn—l (V)pn (l/, 0) Pn—-1 (Vvy) )

K, (v,0,y) = —n=12"/
(v,0,9) Y (V) Yy

Then from (2.11)

e R X vyttt el |

v Prn—1(v,s
_ Vn(u)pn(yvo){l+7n—l( );[ N =L )

) d | peien

T

1+1YT“\)[ 0 ]AX},

B Log or 0 ?
- e [Y 0
Here
+TN 0
5]
1+ MK, (v,r,r) —NK,(v,r,s) N 0
-MK, (v,r,s) 1+ NK, (v,s,s) 0 M
N 0
[ n]ewnies
So ) )
pn(,u,O) 1 T — _1 T
(pn(l/,())> {1+dX BX ;=<1 dX BY
and )
pn(,u,O) 2_{1_XTCY}
pn (v,0)) {1+ XTCOX}'
|

3. PROOF OF THEOREMS 1 AND 2

Let us go back and look at

N 0
1

0 M
3.1 C=-B= '
(3.1) d 1+ MK, (v,r,r)+ NK,, (v,s,8) + MNW

We begin with a result that applies to both the situations of Theorem 1 and 2.
Throughout we assume the hypotheses of Theoreml on v and p.

} + MNL




8 D. S. LUBINSKY

Lemma 3.1
Forr > 1,|s| > 1,

(a)
(3.2) <m>2 < (1 + (chY)l/Q)Q.
(b) Moreover,
e 2 YTLY
(3.3) Y7oy < (7%1 (u)> {312 + 7}2} +

Proof
(a) Note that C is positive definite, so that

IxTov| < (XTex) (vTev))2.

Indeed, this follows from the Cauchy-Schwarz inequality as < X,Y >= XTCY
defines an inner product. Then from (2.8),

<pn (1,0) ) _ {i-xTeyy

P (v,0) {1+ XTCX}
~1-2XTCY + (XTCY)?
N 1+ XTCX
o, 2ETex) (YTey))'? + (XTCX) (YTCY)
- 1+ XTCX
yroy \'?
< 142 ———e YyTcy
= (1+XTCX) e
2
< 1+2(vTey) P evToy = (14 (vTov) )
(b) Here
YT<[ N0 } +MNL>Y
vyicy = oM
1+ MK, (v,r,71)+ NK,, (v,s,s) + MNW
2 2
N (T el ) (T ) e L YTLy
B MK, (v,r,1)+ NK, (v,s,s) w
2 2 2 T
_ 1 (Vs 1 (v, 7 Y'LY
< (Y=t 191()+291()+
T 2K, (v,s,8) 12K, (v,rr) w
2 T
Y1 1 1 YTLY
< (=L =+ = .
< (o) {Febew
[

Lemma 3.2
Let > 1 and s < —1. Then

(a) X
W > % (K, (v,r,r)Kp—1(v,s,8) + K, (v,8,8) Kpy_1 (v,7,7)) .
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(b) Hence,

2
YTy < 202 {7"1 (v) ) Ln=2 (y)} .
Tn Tn—1

Proof
(a) We use the error formula for the Cauchy-Schwartz inequality:

K, (v,r,r)K, (v,s,s) — K, (v,r, 5)2

(3.4 = LY 0 e s) s ()i ()
4,k=0

so using that p; is odd or even according as j is and that s < 0,

K, (v,r,r) K, (v,s,s) — K, (v,r, 3)2

> 5 Y miwn)m s + e 0D ()

j odd, keven

1 2
+5 Yo i) e s ls) +p; (v, Is) pr (v, 7))
j even, k odd

} { Zj odd p?2(V7T) chvcn p% (QVV ‘SD + chvcn p%Q(V/I’) Zj odd p? (21/’ |S|) }
2 +Z] odd pj (V7 ‘SD chven Py (V7T) + chvcn Py (V’ |S|) Zj odd pj (V7T)
Ky (ryr) K (Il [s)) + K5 (ryr) K3 (] [s])

Y

(3.5)

where

Ky (z,y) = > pj (z)p; (y)

0<j<n—1,j even
K5 (z,y) = Yo pi@pi(y).
0<j<n—1,j odd
Next, from the recurrence relation,

Yi—1

(V) pj1 (v, ) + (V) pj-1(v,z)

zp; (v,7) =
o Vi+1 J

v,
so as — (v) < 1, we have
RERS!

Ipj+1(v,z) +pj—1 (v, 7)]
||

| )

Then (recall n is even) for |z| > 1,

Kn(v,z,2) = Kj(e,2)+ K (2, 2)

‘pj (V,l‘)| <

IA

2
K? (x,z) + s {K; (z,2) + K} (x,2)} < 5K} (z,z) .

Similarly,
K1 (v,z,z) < 5K, (x,x).
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Hence from (3.5),
1
w > % (K, (v,r,r)Kp—1(v,s,8) + K, (v,8,8) Kpu_1 (v,7,7)) .
(b) Next,
YTLY
2 2 2
_ (%1 (V)) {Kn (vor7) (Pnl (V,s)) + Ky (v,5,5) <Pn1 (u,r)) 9K, (v,7, 5) P2t (v, 8) pn—1 (v,
Tn s r s T
2 2
Tn—1 1 1>
< — (v K, (v,r,r)K,(v,s,s)| —+-] ,
(B2 0) motrrn ot (4
by Cauchy-Schwarz, so that from (3.3),
yIcy
2 1 + 1
Tn—1 52 2
S ( (V)) 25K, (v,s,8) K, (v,r,T) 1 1 2 ]
Tn +Kn(u,r,r)Kn,l(u,s,s)-&-Kn(y,s,s)Kn,l(u,r,r) (m + ;)
2
V-1 50K, (v, s, s) 50K, (v,r, 1)
< BAlinES 2
N ( ’Yn (V)) |: + anl (V,S,S) 82 + K’ﬂfl (V,'l”,'f') T2

‘We continue this as

(o)

50 50 o1 (v,5)° o1 (v,7)*
24+ =+ 450 :
tFt gt ( e + 72

n-1(v,8,8)s2  K,_1(v,r,r

Here
Yn— Yn—
|spn—2 (v, 8)| = f” . (V)pn_l(v,SHfL 2 (V) pu—s (v, s)
n—1 n—2
Vn—
(3.6) > 2 (1) [pn—1 (v, 5)]

Yn—1

as Pn—1,Pn—3 have the same sign at s, so
Pn_1 (v 8)2 Tn—2 -
) : S n (l/) )
anl (V7S75>8 Yn-1

Po-1 (v,1)° < <7n2 (y)) -

Kn—l (Va T T’) r

Similarly,

Then asr,|s| > 1, and :’/—j (v) <1,

Y7oy < (77;1 @))2 {102 +100 <;Yn‘j (1/)> _2} :

< 202{’“-1@)/%-2@)}2-

Tn Yn—-1
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Proof of Theorem 1
From Lemma 3.1 and Lemma 3.2,

(2 < (14 v [Tt ) =2 )

Pn (Vv O) n Yn—1

|
For the case where both r,s > 1, we first prove:

Lemma 3.3
Assume that r,s > 1. Then

2
YTCY S 12{7n—1 v 7n—2 v } )
Tn ( )/anl( )

Proof
(a)

7n
= Ko (PREDY () ()i g Pt ) s (01
D e e
j=0
= 1HZ_:?{-() (v, 8) = sp; (v, 5) <>}2+M( (") poor (1))
a (7‘5)2 =0 "Pj W) Pn—1 (Vs 8 Spj \Vy8) Pn—1 \V, T (7"8)2 Pn—1\T)Pn-1\V,S .

. . ¥ . .
Using the recurrence relation and T (v) <1, we continue this as
1

1 n—2 { |: 'VJ (1/) Dit1 (l/,’r‘) + ’Y{Y;l (V) Pi—1 (y,?"):| Prn—1 (l/, 5) }2 N (7’ - 5)2
_ )

[Vjil (V) pjs1 (v, s) + Wf (v)pj—1 (v, s)} Dn—1 (v,7 (1"5)2

2 5~ (2 o)) e @) pe ) = ppa () paca )Y N =9
= (rs)2 Jz::O <7j+1 ( )> { +{pj—1 (v,7)Pn-1 (v, 8) = pj—1(V,8) Pn—1 (v, 1)} }+ (rs)2 (o1 (,7) P
2 = {pj-‘rl (V7r)pn—l (Va 5) — Pj+1 (V’ S) Pn-1 (V’T)}Q i 7(7' — 8)2 v, T v,S8 2
= (rs)? = { +{pj-1 (Wsr) Pn-1 (v, 8) = pj—1 (v, 8) P (v,7)} } " (rs)? Ba-1 (7)1 (:8))
< S GO -5 6o )+ L s 37 Pt (,9)°
(rs) =0 (rs)
- (iz[; + (T(rs)? (Pt (v, 7) Pu—1 (v, 5))* .

(pn—l (T) Pn—1 (Vv S))2
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(b) Next, from (3.4), and the Christoffel-Darboux formula,

1

w > 5 (Pn—2 (V,7) Pn—1 (v, 5) — P2 (V,8) Pn—1 (V,T))2

_ % (:: (u)) - (Kn1 (v,m,8) (r = ))°

! (Z:j <y>) s () paa () ).

This last step uses that all p; (r),p; (s) > 0. Then
(r—s)*
w (rs)2
22<%12@02@m4@wnhqlwﬁf

(rs)” \VYn-1

Here from the recurrence relation,

Yn—2

(Pt (,7) P (v, 8))°

Tpn_o (v,1) = (V) pn_1 (v,7) + Tn—2 (V) pn_3 (v,7)

Tn-1 Yn—3
Yn—2
Tn—1

>

SO
Yn—2 , \ Pn-1(V,7)
12

< 1.
’Yn—l TPn—2 (V’ T')

so that
(r—s)*

W (rs)?

(Por (07) P (v, ) < 2 (12 <u>> -

Thus

w
so from (3.3),

Proof of Theorem 2

() < (e

AN
7 N\
—
—+
5
[\
Y
2|7
L
—~
~
~
‘Q
3
|
[\v]
—~
X
~
N———
N——

(V]

YTLY (7—1 @)) P E (7"—2 (y>>_2 <10 (7"‘2 v)
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4. AN ALTERNATIVE PROOF?

We know from elsewhere that

Yicy =yT (D' +K) 'Y,

where

o= ey iy |

Is is true that
—1

(D'+K) <L,
that is
XT(D'+K) X <XTK'X,
or
X" (D7 +K) T - K x <07
Now
(D' +K) - K
B 1 [ N1+ K, (v,s,s) K, (v,r,s)
~ det(D'+K)| —K, (VTS) M~ + K, (v,7,7)
1 K, (v,s,s) —-K, 1/7’8
det K | - K, (v,r,s) K,(v,rr)
_ 1 [NTY 0
" det(D'+K)| 0 M
N 1 1 K, (v,s,8) —K,(v,rs)
det (D_l +K) det K _Kn (1/,7’, 8) KTL (V7T7 T) '
Then
{(D1 4+ K) " = K} det (D! + K) det (K)
Nt 0
= det(K) |: 0 M_1 :|
B 1 K, (v,s,s8) —K,(v,r,s)
+ (det K — det (D! + K)) { Ko s) K ()
Then

(X" (' +K)" = K—l) X} det (D! + K) det (K)

= 22N tdet(K) + 22M ! det (K)
+27 (det K —det (D! + K)) K, (v, 5, 5)
+23 (det K —det (D! + K)) K, (v,7,7)

—2x12 (detK — det (D*1 + K)) K, (v,r,s).

13



14 D. S. LUBINSKY

Now
det (D™' + K)
(N_1 + K, (v,s, s)) (M_1 + K, (v,r, 7")) - K, (v,r, 5)2
N*M?+ M 'K, (v,s,5) + N"'K, (v,r,r) + det (K)
Then

{XT((D 4+ K) ™ = K1) X pdet (D7 + K) det (K)

= 2N tdet(K)+23M ! det (K)
—{NT'"MT'+ MK, (v,s,8) + NT'K,, (v,7,7)}
X {x%Kn (v,8,8) + 22K, (v,r,r) — 22122 K,, (v, 7, s)}

= {Nfl det (K) — N'M™'K, (v,s,5) = M7'K, (v, s, 3)2 —~ N 'K, (v,r,r) K, (v,s, s)}
+a3 {M_l det (K) — N'M'K, (v,r,r) — M 'K, (v,s,5) K, (v,r,7) — N"'K, (v,r, 7“)2}
+22122 K, (v,7, 8) {NT'M~' + MK, (v,s,8) + N"'K,, (v,,7)}

= g? {fN*IKn (v,r,8) = N'M7'K, (v,s,s) — MK, (v,s, 3)2}
+z3 {—MﬁlKn (v,r, 5)2 ~N'M7'K, (v,r,r) = N'K, (v,r, 7")2}
+2z129 K, (v, 71, 8) {N_IM_1 + M 'K, (v,s,5) + N'K,, (v,r, 7’)}

= N 'M! {—x%Kn (v,s,8) — 23K, (v,7,7) + 22122 K,, (v, 7, s)}
+N1 {—x%Kn (v,r,8)° — 22K, (v,7,1)* + 2z122 K, (v, 7,7) K (v, 7, s)}
+M! {—m%Kn (v,s,8)° — 22K, (v,7,8)° + 2109 K,, (v, 5, 8) Ky (v, 7, s)} .

If x1,x2 have opposite sign, then as n is even and K, (v,7,s) > 0, all terms are
negative. Now assume that x1,zs have the same sign. We continue this as

(/B8] - 2 B o))
2y [, (011,9) = VB sy B (o)
N @1 12) — 23 ()

—M! {— (r1 Ky (v, 8, 8) — 2o K, (v, 1, s))g} .

— N71M71

This is indeed negative. Acutally note too that the expression above equals
2
— Ny { — (|SB1| VK, (v,s,8) + x|V Kn (v, 7, 7")) + 21122 K, (v, T, 8) }
-2 |1'1| |132| \/KTL (V7 S, 5)\/Kn (Va T, T)
+Nt {-:U%Kn (v,r, 3)2 — 23K, (v, r)2 + 2z12: K, (v, ry 1) K, (v, s)}

+M! {—m%Kn (v,5,5)% — 22K, (v,1,8)? + 22132 K,, (v, 8, 8) Ky (v, 7, s)} .

which for all 21, x5 (even if K (v,r,s) < 0) gives the desired result.
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