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Abstract. Suppose that ν is a given positive measure on [−1, 1], and that µ
is another measure on the real line, whose restriction to (−1, 1) is ν. We show
that one can bound the orthonormal polynomials pn (µ, y) for µ and y ∈ R,
by the supremum of

∣∣SJ (y) pn−J (S2Jν, y)∣∣, where the sup is taken over all
0 ≤ J ≤ n and all monic polynomials SJ of degree J with zeros in an appro-
priate set.

MSC: 42C05
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1. Results

Let µ be a finite positive Borel measure on the real line with infinitely many
points in its support, and all finite moments∫

tjdµ (t) , j = 0, 1, 2, ... .

Then we may define orthonormal polynomials

pn (µ, x) = γn (µ)xn + ..., γn (µ) > 0,

n = 0, 1, 2, ... satisfying the orthonormality conditions∫
pn (µ, x) pm (µ, x) dµ (x) = δmn.

The nth reproducing kernel is

Kn (µ, x, t) =

n−1∑
j=0

pj (µ, x) pj (µ, t) .

For real polynomials S, pn
(
S2ν, x

)
denotes the nth orthonormal polynomial for

the measure S2ν.
A central problem in the theory of orthonormal polynomials is to establish

bounds on pn (µ, x). Indeed, one of the most celebrated questions in this sub-
ject is the Steklov Conjecture, posed in 1920 and solved by E. A. Rakhmanov in
1979, 1981 [27], [28]. Steklov conjectured that if µ has support [−1, 1], and is ab-
solutely continuous there, while µ′ is bounded below by a positive constant, then
{pn (µ, x)}n≥0 is uniformly bounded in [−1, 1], that is

sup
n≥0

sup
x∈[−1,1]

|pn (µ, x)| <∞.
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SORRY, THIS IS OF COURSE WRONG AND IS WRONG IN THE PUBLISHED
VERSION. IT SHOULD BE THAT FOR EACH 0 < ρ < 1,

sup
n≥0

sup
x∈[−ρ,ρ]

|pn (µ, x)| <∞.

Rakhmanov showed that Steklov’s conjecture is false, and in fact one can find a
measure satisfying its hypotheses such that for infinitely many n,

(1.1) |pn (µ, 0)| ≥ Cn1/2/ (log n)
3/2+ε

,

any ε > 0.
Rakhmanov’s weight µ′ was unbounded. Ambroladze in 1989 [3] constructed a

positive continuous weight on the unit circle for which the orthonormal polynomials
are unbounded, and in 1991 [4] a continuous weight such that for infinitely many
n, their value at 0 grows almost as fast as log n. He even constructed weights on
the unit circle that satisfy a weak Dini condition, that is for some ε ∈ (0, 1) ,

|µ′ (s)− µ′ (t)| ≤ L |ln |s− t||−(1−ε) , s, t ∈ [0, 2π]

but the corresponding sequence of orthonormal polynomials can be unbounded.
There have been further major developments in recent years. Aptekarev, Denisov

and Tulyakov [5], [6] showed that one can remove the factor (log n)
3/2+ε in (1.1).

They proved that if we consider all orthonormal polynomials arising from a mea-
sure whose derivative is bounded below by a given positive constant on the circle,
then the supremum of the sup norm over the unit circle of the nth orthonormal
polynomial over all such measures grows like

√
n. In subsequent work, Denisov,

Aptekarev, and Rush have explored the possible rates of growth when there are
additional conditions, such as both µ′ and 1/µ′ being bounded, or belonging to
BMO [1], [11], [12], [13], [14], [15].
What about positive results that establish boundedness? Probably the most

general result for measures supported on [−1, 1] is still an old 1979 result of Badkov
[8]. He proved that if µ satisfies Szegő’s condition∫ 1

−1

logµ′ (x)√
1− x2

dx > −∞

and µ′ satisfies a local Dini-Lipschitz condition, that is in some interval [a, b] ⊂
(−1, 1), the modulus of continuity

(1.2) ω[a,b] (δ) = sup {|µ′ (s)− µ′ (t)| : s, t ∈ [a, b] and |s− t| ≤ δ} , δ > 0

satisfies

(1.3)
∫ 1

0

ω[a,b] (t)

t
dt <∞,

then the corresponding orthonormal polynomials are uniformly bounded in compact
subsets of (a, b). This was a consequence of deeper pointwise asymptotics.
For non-Szegő weights, Rakhmanov showed in 1986 [29] that for weights on the

unit circle that satisfy a Dini-Lipschitz condition on the whole circle, the orthonor-
mal polynomials are uniformly bounded below on arcs where the weight is bounded
below by a positive number. The relationship between spacing of zeros of orthogo-
nal polynomials and bounds has been explored in [22], [24].
For exponential weights, supported on finite or infinite intervals, Eli Levin and

the author [20] established global bounds, using extensions of a technique that goes
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back to Stan Bonan [9], a student of Paul Nevai. Extensions of that method due
to Mhaskar appear in [25] [26]. For varying exponential weights, the method was
applied in [21]. In some of these results, bounds are then superseded by asymptotics.
There is one classic technique, called Korous’s method, that allows one to transfer

bounds from one set of orthonormal polynomials {pn (µ, x)} to another {pn (ν, x)},
provided ν′/µ′ satisfies a smoothness condition - either a Dini condition or a Lip-
schitz 1/2 type condition, depending on what one knows about {pn (µ, x)}. It is a
powerful and widely used technique, but requires starting with knowledge about a
base set of polynomials {pn (µ, x)} [16, Section 1.7].
What happens if we know that our measure µ has a given restriction ν when

restricted to (−1, 1)? Can we bound the orthonormal polynomial pn (µ, y) in some
way in terms of orthogonal polynomials related to pn (ν, y)? Indeed one may, as
shown by the following. It involves pn

(
S2ν, y

)
, the orthonormal polynomial for the

measure S2ν, where S is a real polynomial.

Theorem 1.1
Let ν be a positive measure on [−1, 1], with infinitely many points in its support.
Let K be a closed subset of R containing (−1, 1). Let y ∈ R and n ≥ 1. Then

sup
{
p2
n (µ, y) : µ|(−1,1) = ν and supp [µ] ⊆ K

}
= supS2

J (y) p2
n−J

(
S2
Jν, y

)
,

where the supremum is taken over all 0 ≤ J ≤ n and monic polynomials SJ of
degree J with distinct zeros in K\ (−1, 1) .

2025 REMARK
There is a small inaccuracy here and the same problem appears in the
published version. In the proofs we assume µ ≥ ν. This is automatic in
the main and most common case when ν does not have masspoints at
±1, but might not be true when ν has masspoints at ±1. So it should
really be,

sup
{
p2
n (µ, y) : µ|(−1,1) = ν, µ ≥ ν, and supp [µ] ⊆ K

}

Remarks
(a) Note that we take the restriction of µ to (−1, 1) and not [−1, 1]. This allows
the measure µ to add masspoints at ±1 to ν.
(b) If J = 0, we take SJ = 1.
(c) The set of polynomials {SJ} does not depend on the particular y, nor on the
measure µ, but only on the set K.
(d) It is a non-trivial task to turn the qualitative formula above into quantitative
estimates. This can be done using potential theory for external fields Q, where
S2
J = e−2Q. We shall do this elsewhere.
(e) It is not clear if the sup above is attained in general. It may be bounded above
by Kn+1 (ν, y, y) because of monotonicity of Christoffel functions and the fact that
µ ≥ ν. Indeed,

p2
n (µ, y) ≤ Kn+1 (µ, y, y) ≤ Kn+1 (ν, y, y) .
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This is not a good bound, but is indicative that the supremum above can grow like
a power of n in the worst cases. Suppose, as an example, that ν is the Legendre
measure so that ν′ = 1, and that K = [−2, 2]. Then considering J = n, we see that

for even n, we may effectively take (as a limiting case) Sn (t) =
(
1− t2

)n/2
and

S2
n (0) p2

0

(
S2
nν, 0

)
= 1/

∫ 1

−1

(
1− t2

)n
dt =

√
n

π
(1 + o (1)) .

(f) Denisov [12] investigated the size of orthogonal polynomials for measures on the
unit circle when one adds point masses to Lebesgue measure, obtaining quantitative
estimates, but focusing on the case where the mass points are inside the support of
the original measure.
When estimating pn (µ, y) for a fixed µ, it might be better to restrict the zeros

of SJ . One choice is to use a sequence of sets of points outside (−1, 1), which
are "asymptotically dense". Thus for L ≥ 1, let BL denote a set of L points in
R\ (−1, 1), such that for all t ∈ K,
(1.4) lim

L→∞
dist (t,BL) = 0.

Here dist denotes the usual distance from a point to a set of points.
Another option is to use Gauss quadrature formulae of order n+1 for (µ− ν)|1,∞)

and (µ− ν)|(−∞,−1]. More precisely, we use the points
{
b+j
}n+1

j=1
in the Gauss

quadrature ∫ ∞
1

P (t) d (µ− ν) (t) =

n+1∑
j=1

λ+
j P

(
b+j
)
,

valid for polynomials P of degree ≤ 2n+1. Observe that if ν has a mass point at 1,
that mass point is excluded from the restriction of µ− ν to [1,∞), but additional
mass points of µ are included. Similarly for (−∞,−1].

Theorem 1.2
Let ν be a positive measure on [−1, 1], with infinitely many points in its support.
Let K be a closed subset of R containing (−1, 1). Let µ be a measure with support
in K and with all finite moments, such that µ|(−1,1) = ν. Let y ∈ R and n ≥ 1.
(a) For L ≥ 1, let BL denote a set of L points in R\ (−1, 1), such that for all
t ∈ K, (1.4) holds. Let ML denote

supS2
J (y) p2

n−J
(
S2
Jν, y

)
,

where the supremum is taken over all 0 ≤ J ≤ n and monic polynomials SJ of
degree J with distinct zeros in BL. Then

p2
n (µ, y) ≤ lim sup

L→∞
ML.

(b) If both (µ− ν)|1,∞) and (µ− ν)|(−∞,−1] have at least n + 1 points in their
supports, let BG denote the set of 2n + 2 points formed from the union of the
Gauss quadrature points of order n+ 1 for these measures. If one or both of them
has less than n+ 1 points in its support, we instead use the mass points from that
or those measures in forming BG. Then

p2
n (µ, y) ≤ supS2

J (y) p2
n−J

(
S2
Jν, y

)
,
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where the supremum is taken over all 0 ≤ J ≤ n and monic polynomials SJ of
degree J with distinct zeros in BG.
The idea of proof is first to consider measures of the form

(1.5) µ = ν +

L∑
j=1

αjδbj ,

and to show that if all αj ∈ [T, S], then |pn (µ, y)| is largest when each αj = S or
T . That is, the maximum is attained at the vertices of [T, S]× [T, S]× ...× [T, S] .

Theorem 1.3
Let ν be a positive measure on [−1, 1], with infinitely many points in its support.
Let L ≥ 1, {bj}Lj=1 be distinct real numbers, y ∈ R and n ≥ 1.
(a) Let S > T ≥ 0. Let

Ω∗ (S, T ) = sup p2
n (µ, y)

where the sup is taken over all measures µ of the form (1.5) with all αj ∈ [T, S].
Then Ω∗ (S, T ) is attained for some measure of the form (1.5) where all αj ∈
{S, T}. If also pn (ν, y) 6= 0, then Ω∗ (S, T ) is attained only for such measures
unless pn (µ, y) is a constant function of some αj, that is for some 1 ≤ j ≤ L,
pn (µ, y) is independent of the choice of αj .
(b) Let

Ω∗ = sup p2
n (µ, y)

where the sup is taken over all measures µ of the form (1.5) with all αj ≥ 0. Then

Ω∗ = supS2
J (y) p2

n−J
(
S2
Jν, y

)
where the sup is taken over all 0 ≤ J ≤ min {L, n} and all monic polynomials SJ
of degree J with distinct zeros in {bj}Lj=1.
This paper is organized as follows: we relate pn (µ, y) to pn (ν, y) using standard

tools in Section 2. We also show that in the case αj →∞, we are forcing pn (µ, t)
to have a factor t − bj . In Section 3, we show that p2

n (µ, y) is largest either when
αj = T or αj = S or when the value is independent of αj . In Section 4, we prove
Theorems 1.1 to 1.3. In the sequel C,C1, C2, ... denote constants independent of
n, x, t. The same symbol does not necessarily denote the same constant in different
occurences.

2. Adding a Discrete Measure

There is a very extensive literature on adding masspoints to an existing measure.
See for example, results and references in [2], [7], [10], [12], [17], [18], [30], [31]. In
this section, we use standard techniques in this topic. We are not sure if any of the
formulae we establish are new. Let L ≥ 1 and

(2.1) µ = ν +

L∑
j=1

αjδbj ,
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where all αj > 0, and all bj are distinct and real. Let

(2.2) D =


α1 0 . . . 0
0 α2 . . . 0
...

...
. . .

0 0 . . . αL

 ;Kn = [Kn (ν, bj , bk)]1≤j,k≤L ;

and

(2.3) Cn= D−1+Kn.

Note that D is positive definite, while Kn is symmetric and positive semidefinite.
The latter follows from the identity

u1

u2

...
uL


T

Kn


u1

u2

...
uL


T

=

n−1∑
i=0

 L∑
j=1

ujpi (bj)

2

.

It follows that Cn is also positive definite. Let us fix a y with

(2.4) pn (ν, y) 6= 0

and set

X =


pn (ν, b1)
pn (ν, b2)

...
pn (ν, bL)

 ;Y = − 1

pn (ν, y)


Kn (ν, y, b1)
Kn (ν, y, b2)

...
Kn (ν, y, bL)

 .

(2.5)

Theorem 2.1
With the above hypotheses,

(2.6) Γ =

(
pn (µ, y)

pn (ν, y)

)2

=

{
1 +XTC−1

n Y
}2

1 +XTC−1
n X

.

Also,

(2.7)
(
γn (µ)

γn (ν)

)2

=
1

1 +XTC−1
n X

.

Proof
Let

πn−1 (s) = pn (µ, s)− γn (µ)

γn (ν)
pn (ν, s) .
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Then using orthogonality, we see that

πn−1 (s) =

∫ 1

−1

Kn (ν, s, t)πn−1 (t) dν (t)

=

∫ 1

−1

Kn (ν, s, t) pn (µ, t) dν (t)

= −
L∑
j=1

αjKn (ν, s, bj) pn (µ, bj) .(2.8)

Setting s = bk,

pn (µ, bk) {1 + αkKn (ν, bk, bk)}+
L∑

j=1,j 6=k
αjKn (ν, bk, bj) pn (µ, bj) =

γn (µ)

γn (ν)
pn (ν, bk) .

(2.9)

Let

B =


1 + α1Kn (ν, b1, b1) α2Kn (ν, b1, b2) α3Kn (ν, b1, b3) . . . αLKn (ν, b1, bL)
α1Kn (ν, b2, b1) 1 + α2Kn (ν, b2, b2) α3Kn (ν, b2, b3) . . . αLKn (ν, b2, bL)
α1Kn (ν, b3, b1) α2Kn (ν, b3, b2) 1 + α3Kn (ν, b3, b3) . . . αLKn (ν, b3, bL)

...
...

...
. . .

...
α1Kn (ν, bL, b1) α2Kn (ν, bL, b2) α3Kn (ν, bL, b3) . . . 1 + αLKn (ν, bL, bL)



= I+KnD = CnD.

Note that then B is non-singular as Cn,D are, and

(2.10) DB−1= C−1
n .

We can recast (2.9) as

B


pn (µ, b1)
pn (µ, b2)

...
pn (µ, bL)

 =
γn (µ)

γn (ν)


pn (ν, b1)
pn (ν, b2)

...
pn (ν, bL)

 .

(2.11) ⇒


pn (µ, b1)
pn (µ, b2)

...
pn (µ, bL)

 =
γn (µ)

γn (ν)
B−1


pn (ν, b1)
pn (ν, b2)

...
pn (ν, bL)

 .
Then from (2.8), and this last relation,

πn−1 (y) = −γn (µ)

γn (ν)


α1Kn (ν, y, b1)
α2Kn (ν, y, b2)

...
αLKn (ν, y, bL)


T

B−1


pn (ν, b1)
pn (ν, b2)

...
pn (ν, bL)

 .
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⇒ pn (µ, y) =
γn (µ)

γn (ν)

pn (ν, y)−


α1Kn (ν, y, b1)
α2Kn (ν, y, b2)

...
αLKn (ν, y, bL)


T

B−1


pn (ν, b1)
pn (ν, b2)

...
pn (ν, bL)


 .

Then

pn (µ, y)

pn (ν, y)
=

γn (µ)

γn (ν)

1 + Y TDB−1


pn (ν, b1)
pn (ν, b2)

...
pn (ν, bL)




=
γn (µ)

γn (ν)

{
1 + Y TC−1

n X
}
,

(2.12)

by (2.10). This will give (2.6) after we prove (2.7). To prove (2.7), we evaluate∫ 1

−1
π2
n−1dν in two different ways. First, from the definition of πn−1,

∫ 1

−1

π2
n−1 (s) dν (s)

=

∫ 1

−1

p2
n (µ, s)

2
dν (s)− 2

(
γn (µ)

γn (ν)

)2

+

(
γn (µ)

γn (ν)

)2

= 1−
L∑
j=1

αjpn (µ, bj)
2 −

(
γn (µ)

γn (ν)

)2

.

Also, from (2.8),

∫ 1

−1

π2
n−1 (s) dν (s)

=

∫ 1

−1

− L∑
j=1

αjKn (ν, s, bj) pn (µ, bj)

2

dν (s)

=

L∑
j,k=1

αjαkKn (ν, bj , bk) pn (µ, bj) pn (µ, bk) .
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Combining the last two identities, and then using (2.11),

1−
(
γn (µ)

γn (ν)

)2

=

L∑
j,k=1

αjαkKn (ν, bj , bk) pn (µ, bj) pn (µ, bk) +

L∑
j=1

αjpn (µ, bj)
2

=


pn (µ, b1)
pn (µ, b2)

...
pn (µ, bL)


T

(DKnD+D)


pn (µ, b1)
pn (µ, b2)

...
pn (µ, bL)



=

(
γn (µ)

γn (ν)

)2

B−1


pn (ν, b1)
pn (ν, b2)

...
pn (ν, bL)



T

(DKnD+D)B−1


pn (ν, b1)
pn (ν, b2)

...
pn (ν, bL)



=

(
γn (µ)

γn (ν)

)2


pn (ν, b1)
pn (ν, b2)

...
pn (ν, bL)


T

(
B−1

)T
DBB−1


pn (ν, b1)
pn (ν, b2)

...
pn (ν, bL)

 .
Then

(
γn (µ)

γn (ν)

)2

1 +


pn (ν, b1)
pn (ν, b2)

...
pn (ν, bL)


T

(
B−1

)T
D


pn (ν, b1)
pn (ν, b2)

...
pn (ν, bL)


 = 1.

Here as D,Kn,Cn are symmetric, from (2.10),

C−1
n =

(
C−1
n

)T
= (DB−1)T =

(
B−1

)T
D.

So (
γn (µ)

γn (ν)

)2 {
1 +XTC−1

n X
}

= 1.

Thus we have (2.7). Squaring and substituting in (2.12), gives (2.6). �
We shall need another representation for Γ. We use a well known formula for

determinants of block matrices involving Schur complements [19, p. 46, Ex. 15] . If
E,H are square matrices and H is non-singular, while F,G have appropriate sizes:

(2.13) det

[
E F
G H

]
= det(E− FH−1G) det (H)

This follows from the identity[
E F
G H

]
=

[
I FH−1

0 I

] [
E− FH−1G 0

0 H

] [
I 0

H−1G I

]
.

.
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Theorem 2.2
(a)

(2.14)
(
γn (µ)

γn (ν)

)2

=
detCn

detCn+1
.

(b)

(2.15) Γ =

(
pn (µ, y)

pn (ν, y)

)2

=

(
det
(
Cn +XY T

))2
detCn detCn+1

.

(c) detCn

detCn+1
is a decreasing function of each αj .

Proof
(a) Using (2.13),

det

[
−1 XT

X Cn

]
=
(
−1−XTC−1

n X
)

detCn.

We add pn (bj) × the first row (i.e.
[
−1 XT

]
) to the (j + 1)st row in the left-hand

side, for j = 1, 2, ..., L. Since Cn= D−1+Kn, we obtain (recall (2.2), (2.3), (2.5))

det

[
−1 XT

0 Cn+1

]
=
(
−1−XTC−1

n X
)

detCn.

Expanding the determinant in the left-hand side by the first column gives

(−1) detCn+1 =
(
−1−XTC−1

n X
)

detCn.

So we obtain from (2.7),(
γn (µ)

γn (ν)

)2

=
1

1 +XTC−1
n X

=
detCn

detCn+1
.

(b) Similarly (2.13) gives

(2.16) det

[
−1 Y T

X Cn

]
=
(
−1− Y TC−1

n X
)

detCn.

Again, we add pn (ν, bj) × the first row (i.e.
[
−1 Y T

]
) to the the (j + 1)st row in

the left-hand side, for j = 1, 2, ..., L. We obtain

det

[
−1 Y T

0 Cn +XY T

]
=
(
−1− Y TC−1

n X
)

detCn.

Expanding by the first row and cancelling −1, gives

det
(
Cn +XY T

)
=
(
1 + YC−1

n XT
)

detCn.

Then from (2.6), (2.7), and (2.14),

Γ =

(
pn (µ, y)

pn (ν, y)

)2

=

{
1 +XTC−1

n Y
}2

1 +XTC−1
n X

=

(
det
(
Cn +XY T

)
detCn

)2
detCn

detCn+1
.

(c) Since γn (µ) decreases as we increase µ, so detCn

detCn+1
decreases (monotonically,

not necessarily strictly) as we increase any αj . �

Next, we see what happens when some αj →∞ and others approach 0 :
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Lemma 2.3
Let M > L ≥ 1. For m ≥ 1, let

µm = ν +

L∑
j=1

αm,jδbj +

M∑
j=L+1

αm,jδbj ,

where for 1 ≤ j ≤ L,
lim
m→∞

αm,j =∞,

and for L < j ≤M,

lim
m→∞

αm,j = 0.

Let

SL (t) =
∏L

j=1
(t− bj) .

(a) Assume that L ≤ n. Then uniformly for t in compact subsets of C,

lim
m→∞

pn (µm, t) = SL (t) pn−L
(
S2
Lν, t

)
.

Also,
lim
m→∞

γn (µm) = γn−L
(
S2
Lν
)
.

(b) Assume L > n. Then uniformly for t in compact subsets of C,

lim
m→∞

pn (µm, t) = 0.

Proof
(a) We use the extremal property of the leading coeffi cients. First, as SL has zeros
at the first L masspoints {bj} of µm,

γn (µm)
−2

= inf
deg(P )=n
P monic

∫
P 2dµm

≤
∫ (

SL (t) pn−L
(
S2
Lν, t

)
γn−L (S2

Lν)

)2

dν (t) +

M∑
j=L+1

αm,j

(
SL (bj) pn−L

(
S2
Lν, bj

)
γn−L (S2

Lν)

)2

= γn−L
(
S2
Lν
)−2

+

M∑
j=L+1

αm,j

(
SL (bj) pn−L

(
S2
Lν, bj

)
γn−L (S2

Lν)

)2

.

Then as
pn−L(S2Lν,bj)
γn−L(S2Lν)

is independent of the weights, and αm,j → 0 for j > L,

(2.17) lim sup
m→∞

γn (µm)
−2 ≤ γn−L

(
S2
Lν
)−2

.

Let J be a compact interval containing [−1, 1] and all the {bj}. Observe that
pn(µm,t)
γn(µm) is a monic polynomial of degree n with zeros in the interval J . Since J
is independent of m, we can by a compactness argument, choose a subsequence{
µmk

}∞
k=1

and a monic polynomial U of degree n such that

lim
k→∞

pn
(
µmk

, t
)

γn
(
µmk

) = U (t)
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uniformly in compact subsets of C. Next,

γn
(
µmk

)−2

=

∫ (
pn
(
µmk

, t
)

γn
(
µmk

) )2

dν (t) +

M∑
j=1

αmk,j

(
pn
(
µmk

, bj
)

γn
(
µmk

) )2

≥
(

min
1≤j≤L

αmk,j

) L∑
j=1

(
pn
(
µmk

, bj
)

γn
(
µmk

) )2

so that

L∑
j=1

U (bj)
2

= lim
k→∞

L∑
j=1

(
pn
(
µmk

, bj
)

γn
(
µmk

) )2

≤ lim sup
k→∞

[
min

1≤j≤L
αmk,j

]−1

lim sup
m→∞

γn
(
µmk

)−2

≤ 0
(
γ−2
n−L

(
S2
Ldν

))
= 0,

by (2.17). So U = SLR, for some monic polynomial R of degree n − L. Next, as
µmk

≥ ν,

lim inf
k→∞

γn
(
µmk

)−2

= lim inf
k→∞

∫ 1

−1

(
pn
(
µmk

, t
)

γn
(
µmk

) )2

dµmk
(t)

≥ lim inf
k→∞

∫ 1

−1

(
pn
(
µmk

, t
)

γn
(
µmk

) )2

dν (t)

=

∫ 1

−1

R2 (t)S2
L (t) dν (t)

≥ γn−L
(
S2
Lν
)−2

.

Together with (2.17), this gives

lim
k→∞

γn
(
µmk

)−2
= γn−L

(
S2
Lν
)−2

.

Since every subsequence of {µm} contains such a subsequence and the limit is
independent of the subsequence, we deduce that

(2.18) lim
m→∞

γn (µm)
−2

= γn−L
(
S2
Lν
)−2

.

Next, let

πm (t) =
pn (µm, t)

γn (µm)
−
SL (t) pn−L

(
S2
Lν, t

)
γn−L (S2

Lν)
.
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We have∫ (
pn (µm, t)

γn (µm)
−
SL (t) pn−L

(
S2
Lν, t

)
γn−L (S2

Lν)

)2

dµm (t)

=
1

γn (µm)
2 −

2

γn (µm) γn−L (S2
Lν)

γn−L
(
S2
Lν
)

γn (µm)

+

∫ 1

−1

(
SL (t) pn−L

(
S2
Lν, t

)
γn−L (S2

Lν)

)2

dν (t) +

M∑
j=L+1

αm,j

(
SL (bj) pn−L

(
S2
Lν, bj

)
γn−L (S2

Lν)

)2

= − 1

γn (µm)
2 +

1

γn−L (S2
Ldν)

2 +

M∑
j=L+1

αm,j

(
SL (bj) pn−L

(
S2
Lν, bj

)
γn−L (S2

Lν)

)2

→ 0,

as m → ∞, by (2.18) and as πm is a difference of monic polynomials of degree n,
with all zeros in a compact set independent of m. Again, as the monic polynomials
are of degree n and all have zeros in a fixed compact set, and as the L2 and L∞
norms are equivalent on polynomials of degree ≤ n, so

lim
m→∞

(
pn (µm, t)

γn (µm)
−
SL (t) pn−L

(
S2
Lν, t

)
γn−L (S2

Lν)

)
= 0

uniformly for t in compact sets of the plane. Using (2.18) again,

lim
k→∞

pn (µm, t) = SL (t) pn−L
(
S2
Lν, t

)
.

(b) Here we again choose a subsequence
{
µmk

}∞
k=1

and a monic polynomial U of
degree n such that uniformly for t in compact sets,

lim
k→∞

pn
(
µmk

, t
)

γn
(
µmk

) = U (t) .

Next,

1 =

∫
p2
n

(
µmk

, t
)
dµmk

≥
L∑
j=1

αm,jp
2
n

(
µmk

, bj
)

≥
(

min
1≤j≤L

αm,j

)2

γn
(
µmk

)2 L∑
j=1

(
pn
(
µmk

, bj
)

γn
(
µmk

) )2

so

γn
(
µmk

)2 L∑
j=1

(U (bj) + o (1))
2

= o (1) .

If for some further subsequence γn
(
µmk

)
is bounded below, then necessarily U (bj) =

0 for 1 ≤ j ≤ L. Since L > n, then U ≡ 0, contradicting that it is a monic polyno-
mial of degree n. So

lim
k→∞

γn
(
µmk

)
= 0

and hence uniformly for t in compact subsets of C,
lim
n→∞

pn
(
µmk

, t
)

= 0.
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Since the limit is independent of the subsequence, it holds for the full sequence. �

3. Varying the Weights

In this section, we study how Γ =
(
pn(µ,y)
pn(ν,y)

)2

varies as each αj does. Throughout,

we assume that

(3.1) µ = ν +

L∑
j=1

αjδbj ,

where all αj ≥ 0 and all bj are real. We use Theorem 2.2, that is, when all αj > 0,

(3.2) Γ =

(
pn (µ, y)

pn (ν, y)

)2

=
det
(
D−1 +Kn +XY T

)2
det (D−1 +Kn) det (D−1 +Kn+1)

,

with the notation (2.1) to (2.5). Since αj appears only in D, and not in Kn, X, Y ,
we see that Γ is a rational function of each αj . Note that Γ is well defined and
finite, even if some αj are 0, even though D−1 is no longer defined.

Theorem 3.1
Let ν be a positive measure on [−1, 1], with infinitely many points in its support.
Let L ≥ 1 and {bj}Lj=1 be L distinct real points. Let n ≥ 1, y ∈ R and pn (ν, y) 6= 0.
Let S > T ≥ 0. Let

Γ∗ (S, T ) = sup

{(
pn (µ, y)

pn (ν, y)

)2

: µ is of form (3.1) with all αj ∈ [T, S]

}
.

Then we can find a measure

µ∗ = ν +

L∑
j=1

α∗jδbj

with all α∗j ∈ {S, T} attaining the sup Γ∗ (S, T ). Moreover, if Γ given by (3.2) is
not a constant function of any αj, the sup is attained only for such measures.
Remarks
(a) For the case L = 2, {b1, b2} = {−1, 1}, y = 0, n even, and ν symmetric, this
theorem appears essentially in [23]. There a study was undertaken when ν is in the
Nevai class, and in more detail for the ultraspherical weight ν′ (t) =

(
1− t2

)α
, α >

−1. For α = − 1
2 , there was exactly one extremal measure when considering weights

(α1, α2) in the simplex α1 +α2 ≤ S, with α1 = α2 = S/2. For α > − 1
2 , there could

be one or two extremal measures depending on the choice of S. Moreover, for the
analogue of Γ∗ (∞, 0) above, it was found that as n→∞,

Γ∗ (∞, 0) = 1 +
2 (α+ 1)

(n+ α)
2 +O

(
n−3

)
,

so is larger than 1 for large enough n, but decays to 1 as n→∞.
(b At first it seems reasonable that either for all j, αm,j → 0 or for all j, αm,j →∞.
However, an analysis in the case L = 2, 1 < b1 < b2 suggested that it is possible
that αm,1 → 0 and αm,2 →∞.
To prove this theorem, we investigate Γ as a function of a single αj . Given a

matrix B, we let B (j; k) denote the matrix obtained from B by removing row j and
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column k. In addition, if B is a matrix such that its (j, j) entry is α−1
j +d, then we

let B# (j) denote the same matrix B but with the (j, j) entry replaced by d. Thus
we are just subtracting α−1

j from the (j, j) entry. Throughout, we assume that n, y
and ν are as in Theorem 3.1. We begin with some elementary manipulation. In
Lemmas 3.2 to 3.5 we assume that pn (ν, y) 6= 0.

Lemma 3.2
Let µ be given by (3.1) and Γ be given by (3.2). Fix 1 ≤ j ≤ L. Fix αk > 0 for
k 6= j.
(a) Γ is a rational function of type (2, 2) in αj. More precisely,

(3.3) Γ =
(Hn + αjJn)

2

(Fn + αjGn) (Fn+1 + αjGn+1)
,

where

Fn = detCn (j; j) > 0;Gn = detC#
n (j) > 0;

Hn = det
(
Cn + Y TX

)
(j; j) ;Jn = det

(
Cn + Y TX

)#
(j) .(3.4)

Here Fn, Gn, Hn, Jn do not depend on αj, but may depend on αk for k 6= j.
(b)

(3.5) FnGn+1 −GnFn+1 ≥ 0.

Moreover,
Fn + αjGn

Fn+1 + αjGn+1

is a monotone decreasing function of αj ∈ [0,∞).
(c) If FnGn+1 −GnFn+1 > 0, then

∂Γ

∂αj

=
1

FnGn+1 − Fn+1Gn

{
− (HnGn+1 − Fn+1Jn)

2

(Fn+1 + αjGn+1)
2 +

(HnGn − FnJn)
2

(Fn + αjGn)
2

}
.

(3.6)

In addition

(3.7)
∂Γ

∂αj |αj=0

= − H2
n

F 2
nF

2
n+1

(GnFn+1 + FnGn+1) +
2JnHn

FnFn+1
,

and as αj →∞,
∂Γ

∂αj

=
1

α2
j

{
J2
n

G2
nG

2
n+1

(FnGn+1 +GnFn+1)− 2JnHn

GnGn+1
+O

(
1

αj

)}
.(3.8)

Proof
(a) Recall from Theorem 2.2 that

Γ =

(
pn (µ, y)

pn (ν, y)

)2

=

(
det
[
Cn + Y XT

])2
(detCn+1) (detCn)

.
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Here αj appears only in the (j, j) position in each matrix. Expanding by the jth
row, we see that

det (Cn) = det(D−1+Kn)

= α−1
j det(D−1+Kn) (j; j) + det(D−1+Kn)# (j)

= α−1
j Fn +Gn.

Here (D−1+Kn) (j; j) and (D−1+Kn)# (j) are still positive definite, so Fn, Gn > 0.
While the former is obvious, the latter follows from the fact that given

Z = [x1 x2...xL]
T

with all real entries,

ZT (D−1+Kn)# (j)Z

≥ ZT
(
D−1

)#
(j)Z =

L∑
k=1,k 6=j

α−1
j x2

k > 0

provided at least one of x1...xj−1, xj+1...xL is non-zero. If they are all zero, but
xj 6= 0, we then have

ZT (D−1+Kn)# (j)Z = Kn (ν, bj , bj)x
2
j > 0.

So indeed, (D−1+Kn)# (j) is positive definite. Similarly,

det
[
D−1+Kn + Y XT

]
= α−1

j det
(
D−1+Kn + Y XT

)
(j; j) + det

(
D−1+Kn + Y XT

)#
(j)

= α−1
j Hn + Jn.

Then

Γ =

(
α−1
j Hn + Jn

)2(
α−1
j Fn+1 +Gn+1

) (
α−1
j Fn +Gn

)
=

(Hn + αjJn)
2

(Fn+1 + αjGn+1) (Fn + αjGn)
.

(b) From Theorem 2.2(c),

detCn
detCn+1

=
Fn + αjGn

Fn+1 + αjGn+1

is a decreasing function of αj ∈ (0,∞), so for such αj ,

∂

∂αj

(
Fn + αjGn

Fn+1 + αjGn+1

)
≤ 0

⇒ Fn+1Gn −Gn+1Fn

(Fn+1 + αjGn+1)
2 ≤ 0.

(c) If FnGn+1 − GnFn+1 > 0, then the partial fraction decomposition of Γ as a
rational function of αj is

Γ

=
J2
n

Gn+1Gn
+

1

FnGn+1 − Fn+1Gn

{
(HnGn+1 − Fn+1Jn)

2

Gn+1 (Fn+1 + αjGn+1)
− (HnGn − FnJn)

2

Gn (Fn + αjGn)

}
.
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This follows by a straightforward calculation. Then

∂Γ

∂αj

=
1

FnGn+1 − Fn+1Gn

{
− (HnGn+1 − Fn+1Jn)

2

(Fn+1 + αjGn+1)
2 +

(HnGn − FnJn)
2

(Fn + αjGn)
2

}
.

Next
∂Γ

∂αj |αj=0

=
1

FnGn+1 − Fn+1Gn

{
−
(
Hn

Gn+1

Fn+1
− Jn

)2

+

(
Hn

Gn
Fn
− Jn

)2
}

=
1

FnGn+1 − Fn+1Gn

{
H2
n

((
Gn
Fn

)2

−
(
Gn+1

Fn+1

)2
)

+ 2JnHn

(
Gn+1

Fn+1
− Gn
Fn

)}

=
1

FnGn+1 − Fn+1Gn

{
H2
n

F 2
nF

2
n+1

(GnFn+1 − FnGn+1) (GnFn+1 + FnGn+1)

− 2JnHn

FnFn+1
(GnFn+1 − FnGn+1)

}

= − H2
n

F 2
nF

2
n+1

(GnFn+1 + FnGn+1) +
2JnHn

FnFn+1
.

Finally, as αj →∞,

∂Γ

∂αj

=
1

FnGn+1 − Fn+1Gn

1

α2
j

{
−
(
Hn −

Fn+1

Gn+1
Jn

)2

+

(
Hn −

Fn
Gn

Jn

)2

+O

(
1

αj

)}

=
1

FnGn+1 − Fn+1Gn

1

α2
j

 J2
n

((
Fn
Gn

)2

−
(
Fn+1
Gn+1

)2
)

+2JnHn

(
Fn+1
Gn+1

− Fn
Gn

)
+O

(
1
αj

)


=
1

α2
j

{
J2
n

G2
nG

2
n+1

(FnGn+1 +GnFn+1)− 2JnHn

GnGn+1
+O

(
1

αj

)}
.

�

We consider separately the cases where FnGn+1 −GnFn+1 is positive or 0.

Lemma 3.3
Let 1 ≤ j ≤ L, and fix αk > 0 for k 6= j. Assume

(3.9) FnGn+1 −GnFn+1 > 0.

Let S > T > 0 and

(3.10) Γ∗j = sup {Γ : T ≤ αj ≤ S}

and assume

(3.11) Γ∗j > 0.
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Then Γ∗j is attained only when αj = T or αj = S.
Proof
We do this in a number of steps.
Step 1: There is at most one value of αj ∈ [0,∞) at which ∂Γ

∂αj
= 0.

For ∂Γ
∂αj

= 0, (3.6) shows that we must have

(HnGn+1 − Fn+1Jn)
2

(Fn+1 + αjGn+1)
2 =

(HnGn − FnJn)
2

(Fn + αjGn)
2 .

If eitherHnGn+1−Fn+1Jn orHnGn−FnJn is non-zero, then both must be non-zero
(recall Fn, Gn > 0), and

(3.12)
(Fn + αjGn)

2

(Fn+1 + αjGn+1)
2 =

(HnGn − FnJn)
2

(HnGn+1 − Fn+1Jn)
2 .

Taking square roots,

(3.13)
Fn + αjGn

Fn+1 + αjGn+1
= ± HnGn − FnJn

HnGn+1 − Fn+1Jn
.

The left-hand side is positive and is a decreasing rational function of αj ∈ [0,∞),
by Lemma 3.2(b). It is also non-constant because of (3.9). So only one choice of
the right-hand side works. Thus there is at most one αj in [0,∞) where Γ has a
critical point.

Next suppose HnGn+1 − Fn+1Jn = HnGn − FnJn = 0. If first one of Jn, Hn

is non-zero, then both must be non-zero because Fn, Gn are positive. In this case,

Hn

Jn
=
Fn
Gn

=
Fn+1

Gn+1
,

contradicting our hypothesis (3.9. The last remaining possibility is that Jn = Hn =
0. But then Γ = 0 for all αj ∈ (0,∞), contradicting our hypothesis (3.11).
Step 2: Monotonicity properties
Because there is at most one critical point in [0,∞), there are the following possi-
bilities:
(i) Γ is strictly decreasing in (0,∞) .
(ii) Γ is strictly increasing in (0,∞) .
(iii) Γ decreases strictly to a local minimum and then increases thereafter.
(iv) Γ increases to a local maximum and then decreases thereafter.
In the first three cases, the conclusion of the lemma follows. We proceed to show
that (iv) is not possible:
Step 3: If ∂Γ

∂αj |αj=0
> 0, then Γ is increasing in (0,∞).

First (3.7) shows that Hn 6= 0. Then

∂Γ

∂αj |αj=0

= − 2H2
n

FnFn+1

(
1

2

[
Gn
Fn

+
Gn+1

Fn+1

]
− Jn
Hn

)
.

Since Fn, Fn+1 > 0 and Hn 6= 0, our hypothesis forces

(3.14)
1

2

[
Gn
Fn

+
Gn+1

Fn+1

]
<

Jn
Hn

.
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We next use the inequality between geometric, arithmetic and harmonic means.
Recall that if α, β are positive real numbers,

1

2
(α+ β) ≥

√
αβ ≥ 2

1
α + 1

β

,

and we have strict inequality unless α = β. Since we are assuming Gn

Fn
< Gn+1

Fn+1
,

(3.14) gives the strict inequality

Jn
Hn

>
2

Fn
Gn

+ Fn+1
Gn+1

.

Then we cannot have Jn = 0, so (recall Fn, Fn+1, Gn, Gn+1 > 0),

(3.15)
Fn
Gn

+
Fn+1

Gn+1
> 2

Hn

Jn
.

Then from (3.8),

∂Γ

∂αj

=
1

α2
j

J2
n

GnGn+1

{
Fn
Gn

+
Fn+1

Gn+1
− 2Hn

Jn
+O

(
1

αj

)}
> 0(3.16)

for large enough αj . So Γ is an increasing function of αj for large enough αj . Since
∂Γ
∂αj |αj=0

> 0, we claim that ∂Γ
∂αj

> 0 in (0,∞). Otherwise it would have to have

both a local maximum and minimum, contradicting that it has at most one critical
point. So Γ is increasing in (0,∞). Thus the case (iv) above is not possible and
the lemma is proved. �

Lemma 3.4
Let 1 ≤ j ≤ L, and fix αk > 0 for k 6= j. Assume

(3.17) FnGn+1 −GnFn+1 = 0.

Then Γ is constant for αj ∈ [0,∞), and moreover, for all αj > 0, pn (µ, x) is the
same polynomial, and pn (µ, bj) = 0.
Proof
First recall from (2.14) and (3.4) that(

γn (µ)

γn (ν)

)2

=
detCn

detCn+1
=

Fn + αjGn
Fn+1 + αjGn+1

.

Our hypothesis shows that for all αj ,(
γn (µ)

γn (ν)

)2

=
Gn
Gn+1

.

So γn (µ) is constant in αj . Now let us consider two such measures. Let 0 ≤ ∆ < β
and let µ∆ be the measure µ where αj = ∆ and µβ be the measure µ where αj = β.
We already know that

γn (µ∆) = γn
(
µβ
)
.



20 D. S. LUBINSKY

Then ∫ (
pn (µ∆, x)− pn

(
µβ , x

))2
dµ∆ (x)

= 1− 2
γn
(
µβ
)

γn (µ∆)
+

∫
pn
(
µβ , x

)2
dµ∆ (x)

= 1− 2 + 1 + pn
(
µβ , bj

)2
(∆− β)

= pn
(
µβ , bj

)2
(∆− β) .

The left-hand side is nonnegative, so the right-hand side must be also. However,
∆− β < 0. Then necessarily pn

(
µβ , bj

)
= 0, and moreover,∫ (

pn (µ∆, x)− pn
(
µβ , x

))2
dµ∆ (x) = 0,

so that pn (µ∆, x) ≡ pn
(
µβ , x

)
. From the definition (3.2) of Γ, it is constant for

αj ∈ [0,∞). �

Proof of Theorem 3.1
Suppose first T > 0. Choose

µm = ν +

L∑
j=1

αm,jδbj

with

lim
m→∞

(
pn (µm, y)

pn (ν, y)

)2

= Γ∗ (S, T ) .

By passing to a subsequence, we may assume that for 1 ≤ j ≤ L,

lim
m→∞

αm,j = α∗j .

Let

µ∗ = ν +

L∑
j=1

α∗jδbj .

Continuity of orthonormal polynomials in the measure (for fixed degree) ensures
that (

pn (µ∗, y)

pn (ν, y)

)2

= Γ∗ (S, T ) .

From the previous two lemmas, if Γ is not constant in αj , then necessarily α∗j = S
or T . If Γ is constant in αj , we then can choose α∗j = S or T . Finally if T = 0, we
can apply the above with a sequence of values of T decreasing to 0. �

4. Proof of Theorems 1.1 to 1.3

We begin with

The Proof of Theorem 1.3 (a)
For the case where pn (ν, y) 6= 0, this already follows from Theorem 3.1. Now
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suppose that pn (ν, y) = 0. Choose a sequence {yk} converging to y, but with
pn (ν, yk) 6= 0 for k ≥ 1. By Theorem 3.1, for each k, there is a measure

µk = ν +

L∑
j=1

αj,kδbj

with all αj,k ∈ {S, T} and(
pn (µk, yk)

pn (ν, yk)

)2

= sup

{(
pn (µ, yk)

pn (ν, yk)

)2

: µ of form (3.1) with all αj ∈ [S, T ]

}
.

Since there are at most 2L choices for (αj,k, ...αL,k), by passing to a subsequence
we may assume that

αj,k = αj,1 for all j, k.

Then µk = µ1 for all k, so that cancelling pn (ν, yk) ,

pn (µ1, yk)
2

= sup
{
pn (µ, yk)

2
: µ of form (3.1) with all αj ∈ [S, T ]

}
.

But then if µ is any measure of the form (3.1) with all αj ∈ [S, T ],

pn (µ, y)
2

= lim
k→∞

pn (µ, yk)
2

≤ lim
k→∞

pn (µ1, yk)
2

= pn (µ1, y)
2
.

It follows that µ1 is a measure of the form (3.1) with all weights S or T , and

pn (µ1, y)
2

= sup
{
pn (µ, y)

2
: µ of form (3.1) with all αj ∈ [S, T ]

}
.

�

The Proof of Theorem 1.3(b)
First assume that pn (ν, y) 6= 0. Choose measures

µm = ν +

L∑
j=1

αm,jδbj ,m ≥ 1,

with

lim
m→∞

pn (µm, y)
2

= Ω∗ = sup
{
pn (µ, y)

2
: µ is of form (3.1) with all αj ≥ 0

}
.

For 1 ≤ j ≤ L, we may choose a subsequence of {αm,j}∞m=1 having limit α
∗
j ∈ [0,∞].

By changing our notation, we may assume that for each j,

lim
m→∞

αm,j = α∗j .

We can separate into three sets of indices: j ∈ J1 if α∗j = 0; j ∈ J2 if α∗j = ∞;
j ∈ J3 if 0 < α∗j < ∞. If j ∈ J3, then by Theorem 3.1, Γ above is a constant
function of αj ∈ [0,∞), so remains the same as αj → ∞. So we may insert all
the indices in J3 into those in J2, and dispense with J3. Thus all the α∗j may be
assumed to be 0 or ∞. Next if the expanded J2 contains more than n indices,
Lemma 2.3(b) shows that

Ω∗ = lim
m→∞

pn (µm, y) = 0,
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contradicting that Ω∗ ≥ pn (ν, y)
2. So J2 has at most n indices. Write

(4.1) µm = ν +
∑
j∈J1

αm,jδbj +
∑
j∈J2

αm,jδbj .

If S is the monic polynomial of degree M(≤ n) say, whose zeros are those bj with
j ∈ J2, Lemma 2.3(a) shows that

lim
m→∞

pn (µm, t)
2

= S2
M (t) pn−M

(
S2
Mν, t

)
uniformly for t in compact subsets of the plane. In particular,

Ω∗ = lim
m→∞

pn (µm, y)
2

= S2
M (y) p2

n−M
(
S2
Mν, y

)
so that

Ω∗ ≤ supS2
J(y)p2

n−J
(
S2
Jν, y

)
where the sup is taken over all 0 ≤ J ≤ n and monic polynomials SJ of degree
≤ min {n,L} with zeros in {bj}Lj=1.

For the converse direction, let SJ be a monic polynomial of degree J ≤ n, with
zeros bj , j ∈ J2 say. We let

(4.2) µm = ν +m
∑
j∈J2

δbj ,m ≥ 1,

and apply Lemma 2.3 (a) to deduce that

Ω∗ ≥ lim
m→∞

pn (µm, y)
2

= S2
J (y) p2

n−J
(
S2
Jν, y

)
.

As SJ is any such polynomial,

Ω∗ = supS2
J(y)p2

n−J
(
S2
Jν, y

)
where the sup is taken over all 0 ≤ J ≤ n and monic polynomials SJ of degree
≤ min {n,L} with zeros in {bj}Lj=1.

We now show that the conclusion of (b) remains valid if pn (ν, y) = 0. Choose
a sequence {yk} converging to y, but with pn (ν, yk) 6= 0 for k ≥ 1. For each k,
there is a polynomial SJk as above such that

sup
{
p2
n (µ, yk) : µ is of form (3.1) with all αj ≥ 0

}
= S2

Jk
(yk) p2

n−Jk
(
S2
Jk
ν, y
)
.

There are only finitely many monic polynomials of degree J ≤ n with all distinct
zeros in the finite set {bj}Lj=1. So we may choose a further subsequence (which we
denote in the same way) such that Jk = J and SJk = SJ for all k. Then for any µ
of the form (3.1),

p2
n (µ, y) = lim

k→∞
p2
n (µ, yk)

≤ lim sup
k→∞

S2
J (yk) p2

n−J
(
S2
Jν, yk

)
= S2

J (y) p2
n−J(S2

Jν, y).

So

Ω∗ = sup
{
p2
n (µ, y) : µ is of form (3.1) with all αj ≥ 0

}
≤ S2

J (y) p2
n−J

(
S2
Jν, y

)
.
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The opposite inequality follows from Lemma 2.3, by considering {µm} of the form
(4.2). �
We turn to

The Proof of Theorem 1.2(a)
Let µ be the given measure. Let ω = µ− ν. The idea here is to approximate ω by
discrete measures with masspoints in the given set BL. Assume that the points in
BL ∩ [1,∞) are

1 ≤ b+1 < b+2 < ...

and in BL ∩ (−∞,−1] are
−1 ≥ b−1 > b−2 > ...

The
{
b+j
}
,
{
b−j
}
depend on L, but we do not explicitly display this dependence.

Choose discrete measures

ρ+
L =

∑
j

δb+j

∫
[b+j ,b

+
j+1)

dµ

and

ρ−L =
∑
j

δb−j

∫
(b−j+1,b

−
j ]

dµ.

Moreover, if there are mass points at some b±j , we include them in the integral.
Because of our hypotheses on the spacing of the

{
b±j
}
, it follows that ρ+

L + ρ−L
converges weakly to ω as L→∞. Hence as L→∞, all the moments of ν+ρ+

L +ρ−L
converge to those of µ, so also

lim
L→∞

pn
(
ν + ρ+

L + ρ−L , y
)

= pn (µ, y) .

By Theorem 1.3(b),
p2
n

(
ν + ρ+

L + ρ−L , y
)
≤ML, L ≥ 1,

so
p2
n (µ, y) ≤ lim sup

L→∞
ML.

�

The Proof of Theorem 1.2(b)
Let ω1 = (µ− ν)|[1,∞) and ω2 = (µ− ν)|(−∞,−1]|. If ω1 has at least n + 1 points
in its support, we may form its Gauss quadrature of order n+ 1. Write this in the
form ∫

P (t) dωG1 (t) =

n+1∑
j=1

λ+
j P

(
b+j
)

for polynomials P of degree ≤ 2n+ 1. Here all b+j > 1. Similarly, If ω2 has at least
n+ 1 points in its support, we may form its Gauss quadrature of order n+ 1:∫

P (t) dωG2 (t) =

n+1∑
j=1

λ−j P
(
b−j
)

for polynomials P of degree ≤ 2n+ 1. Here all b−j < −1. In this case, we let BG be
the set of all the

{
b−j
}
,
{
b+j
}
. If one or both of ω1, ω2 have less than n+1 points in
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their support, we just take the mass points in ω1 and/or ω2. Then for polynomials
P of degree ≤ 2n+ 1,∫

P (t) d
(
ν + ωG1 + ωG2

)
(t) =

∫
P (t) dµ (t) .

It follows that µ and ν + ωG1 + ωG2 have the same orthogonal polynomial of degree
n, as it is determined by the first 2n+1 moments of the measure. Here ν+ωG1 +ωG2
has the form to which we can apply Theorem 1.3(b), where the

{
b±j
}
are the points

in BG. It follows from Theorem 1.3(b) that

pn (µ, y)
2 ≤ supS2

J (y) pn−J
(
S2
Jν, y

)
where the sup is taken over all 0 ≤ J ≤ n and all monic polynomials SJ of degree
J , with distinct zeros in BG. �

The Proof of Theorem 1.1
Assume that µ|(−1,1) = ν and supp[µ] ⊆ K. Then we can find a sequence of mea-
sures {µL}L≥1, where

µL = ν +

L∑
j=1

αL,jδbL,j ,

and all {bL,j}j,L lie in K\(−1, 1), which contains the support of µ− ν, while

lim
L→∞

∫
tjdµL (t) =

∫
tjdµ (t) , 0 ≤ j ≤ 2n+ 1.

(Here we want the masspoints to lie in K\ (−1, 1), which is more restrictive than
lying in R\ (−1, 1)). For compactly supported µ − ν, this follows from the classic
fact that pure jump measures are weakly dense in the set of measures with given
compact support. When µ−ν has non-compact support, we can take its intersection
with a growing sequence of compact intervals. By Theorem 1.3, for each L ≥ 1,

p2
n (µL, y) ≤ supS2

J (y) p2
n−J

(
S2
Jν, y

)
,

where the supremum is taken over all 0 ≤ J ≤ n and monic polynomials SJ of
degree J with distinct zeros in K\ (−1, 1) . Denote the latter supremum by Λ. It is
finite as it is bounded above by Kn+1 (ν, y, y). Then also

p2
n (µ, y) = lim

L→∞
p2
n (µL, y) ≤ Λ.

Thus as µ is any such measure,

(4.3) sup
{
p2
n (µ, y) : µ|(−1,1) = ν and supp [µ] ⊆ K

}
≤ Λ.

For the opposite inequality, let ε > 0, J ≤ n and choose a monic polynomial SJ
with distinct zeros in K\ (−1, 1) such that

S2
J (y) p2

n−J
(
S2
Jν, y

)
≥ Λ− ε.

If {bj}Lj=1 are the zeros of SJ , choose

µm = ν +m

L∑
j=1

δbj ,m ≥ 1.
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Then Lemma 2.3 shows that

lim
m→∞

pn (µm, y)
2

= S2
J (y) p2

n−J
(
S2
Jν, y

)
≥ Λ− ε.

So we have also the converse inequality to (4.3). �
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