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ABSTRACT. We obtain further results on distribution of eigenval-
ues of growing size Toeplitz matrices [a"+k—j]1<j.k<n
when the entries {a;} are "smooth" in the sense, for example, that
for some a > 0,

asn — oo,

aj_1a; 1
T =1 — (14 0(1), § — oo
as aj
In particular we consider distributions that involve absolute values
of eigenvalues, or their real parts, and obtain an upper bound for

the rate of decay of determinants.

Toeplitz matrices, eigenvalue distribution 15B05, 15A18, 30D99, 30B70,
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1. INTRODUCTION AND RESULTS

The distribution of eigenvalues of Toeplitz matrices is a much studied
topic. Most results deal with the eigenvalues of [cx—;], _; , ., Where {c;}

are the trigonometric moments of some real valued function [3]. There

are generalizations to block matrices, multilevel settings and variable

coefficients - see for example, [2], [5], [12], [14]. There is also an alter-

native setting where the entries of the Toeplitz matrix are power series

coefficients. For example, Polya [9] proved that if f (z) = Z;io aj/z’

can be analytically continued to a function analytic in the complex
plane outside a set of logarithmic capacity 7 > 0, then

1/n?

lim sup |det [@n—j k], <; <

n—oo

<.

See [8] for a partial survey.

Toeplitz matrices also arise in Padé approximation. Let f(z) =
P a;z’ be a formal power series, and m,n > 0. The (m,n) Padé
approximant to f is a rational function [m/n] = P/Q where P has

degree at most m, @) has degree at most n and is not identically 0, and

(fQ—P)(x) =0 (z"""),
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2 D. S. LUBINSKY

in the sense that the power series on the left-hand side has 0 as the
coefficient of 27, provided 0 < j < m + n. (@), suitably normalized,
admits the representation [1]

A Q41 e Am4n
Am—1 A, crr Om4n-—1
Q (z) = det s : s ,
Um—n+1 Om—n+2 *°° (m+41
on Zn—l .. 1

where we set a; = 0 if j < 0, and we assume that the determinant
does not vanish identically. In particular, the constant coefficient is
the determinant of

(11) Apn = [am—j'i‘k]lgj,kgn :

We let A (B) denote the list of eigenvalues of a square matrix B, re-
peated according to multiplicity.

There is folklore that Padé approximants behave well when the co-
efficients are "smooth". When a; # 0 for large enough j, the author
attempted to quantify this using
(1.2) 4 =

aj

In particular if n is fixed, and

(1.3) lim ¢; = ¢,
j—o0
it was shown [6, p. 308] that
n—1
lim det (A,.,) /al, = H (1—¢)"".
j=1

This is not useful if ¢ is a root of unity, so additional assumptions are
required for that case: if there is an asymptotic expansion, so that for
each ¢ > 1,

. C1 Ca Cy —p—1
qj—q—7+j—2+...+j7+0(] ),
where ¢; # 0, then [6, p. 309] for each fixed n > 1,
n—1
lim det (A,.,) / {a% H (1- qg‘n)n—y} = 1.
j=1

Rusak and Starovoitov [10] showed that when n grows, but n = o (m!/?),
this last relation persists.
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The most interesting and challenging case is the "diagonal" one
where m = n — oo. One situation where analysis is possible, is where
(1.3) holds with |¢| < 1, but this leads to a very narrow class of func-
tions [7]. Probably ¢ = 1 is the most interesting case. As a first step in
[8], the author analyzed distribution of eigenvalues of A,,, when m/n
remains bounded above and below, while n — oco. Singular values and
other aspects were further studied in [11], see also related material in
[4], [5], [13]. One class of functions to which our results are applicable
is

f2)=)_#/(GH"" a>0,
=0
an entire function of order . Here g; of (1.2) satisfies

1 1
q; = exp (——, +0 <—2>> :
aj J

This is also true for the Mittag-Leffler function
[2)=) w7
&= 2 T Gat
any 3 € C\(—o0,0]. For the hypergeometric function with parameters
{Ci}le ) {dz}le in C\(_OO> 0]>
. (Cl>j (C2)j (Ck)j

fz) = (dv), (dz)j...(dg)f]’

where (c); = c¢(c+1)...(c+j —1) is the usual Pochhammer symbol,

and { > k+1,
{—k 1
om0 0 (1)),
J J

In order to handle more general power series, one replaces multiples

of j by more general sequences { pj}j>1, so that one assumes

J=0

1
= (~L1+o)).
Pj
The precise technical restrictions on {pj} are given below. Using a
similarity transformation, the author proved in [8] that when m/n re-

mains bounded above and below by positive constants,

(1) As n — oo,
(1.4) max )|)\| =/27p,, (1 +0(1)).

AEA(Amn /am
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(II) The set of limit points of {A (Amn/ (am\/27p,,)) :n > 1} s [0,1].
There were also results on distribution of eigenvalues. Define the
scaled counting measure

1
Hon =0 DL O S

XeA(Amn/am)

We showed that
(III) As n — oo,

dp,,,, — dég

in the sense that for every real valued function f defined and continuous
in some open subset of the plane containing [0, 1],

(15) tin [ £ iy, =1 0.

This says that in some sense, the eigenvalues cluster around 0. If
however, we weight the eigenvalues suitably, then we obtain more in-

teresting weak convergence results. There were two weightings used in
[8]. The first was

1
2 2
(1.6) Fomn = — E A 5A/ o

s
pm AEA(Amn /am)

Under suitable conditions, it was shown in [8] that
(IV) As n — oo,

7 |log t

in the sense that for every real valued function f defined and continuous
in some open subset of the plane containing [0, 1],

1. li 2 = )ty ———
(17) noo F A 7r|10gt

Under addtional conditions on {pj}, we studied the weak convergence
of

1
[ _
(1.8) Hann = — > (Re /\)5”\/@,
)\EA(Amn/a'm)
and proved:
(V) As n — oo,

(1.9) dul) 25w log t| 7% dt
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i the sense that for each function f defined and continuous in an open
subset of the plane containing [0, 1],

1

(1.10) lim [ fdull = / F (@) |7 logt| ™"/ dt.
n—oo 0

In particular, the assertions (I) to (V) hold for the three examples of

power series listed above.

In this paper we focus on counting measures that weight absolute
values of the eigenvalues, or absolute values of their real parts. We also
obtain an upper bound on the determinant of A,,,,, and pose some prob-
lems. At this stage, we present the technical conditions on { pj } In un-
derstanding them, it is good to think of p; = j or p; = j (log (j + 1))4
for some real A.

Our weakest hypotheses on the comparison sequence are given in:

Definition 1.1
Let { pj }j>1 be an increasing sequence of positive numbers, with limit
oo, with

(L.11) lim p,/j% = 0,
j—o00
(1.12) lim sup py;/p; < 00;
Jj—oo

and such that for each D > 0,

(1.13) lim | max |1- 25} =0
oo \lil<y/ Doy Pk
Then we call { j }j>1 an asymptotic comparison sequence.
We prove:
Theorem 1.2

Assume that {a;} is a non-zero sequence of complex numbers such that
for some comparison sequence {pj }jzl’

1a; 1
(1.14) g = T — oxp (—— (1+ o(1))> .
aj Pj
Let R > 1 and for n > 1, let m = m (n) satisfy
1 m
— < — <R
R—n ™~
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(a) For n > 1, let

1 2
(1.15) Tonn = > ey, S

/T Pm MEA(Amn/am)

Then

* 2
7 |log t|

Tmn

in the sense that if g :[0,00) — R is continuous,

: ! |2
(1.16) TLILI& g (t) dTmn (15):/0 g(t)t ~Togl] dt.

(b) Let f: (0,00) — R be continuous and nonnegative in (0,0) for
some 0 > 0. Then

2
7 |log t|

(1.17) lim inf /0+ £ () drom () > /O F)t

n—oo

The integral on the left is interpreted as excluding any masspoints at
0. The integral on the right may = oo.
(c) If we restrict n to those indices for which det (A,.,) # 0, then

Un G
(1.18) |det (Ap,)| —|am|\/27fpmexp< ’—27Tpm>’

where (,, — 00 as n — o0.

Remarks

(a) Note that if for example m = m(n) = n, and the power series
f(z) =272, a;z’ is not the Maclaurin series of a rational function,
then det (A,,,) # 0 for infinitely many n [1].

(b) Of course it would be useful to know the rate as which (,, — oo,
but (d) at least gives an upper bound for the rate of decay or growth
of det (A,y).

(c) Under additional conditions, we can replace |A| by |Re Al:

Definition 1.3
Let { P; }j>1 be an asymptotic comparison sequence in the sense of De-
finition 1.1. Assume in addition, that for each D > 0,

posi| 52
(1.19) lim max 12 B ) — o,
k=00 \ 1<|j1<\/Dpy log oy Pk J



EIGENVALUES OF TOEPLITZ MATRICES 7

and
1 1 2]
(1.20) lim max SR /7 )
k=0 \1<ljl<\/Dortogme | Phti P Pl |J]

Then we call { pj}j>1 a smooth asymptotic comparison sequence.
It is straightforward to check that p; = j satisfies the requirements of
both definitions. Several other examples are presented in [§]. We prove:

Theorem 1.4
Assume that {a;} is a non-zero sequence of complex numbers such that
for some comparison sequence {pj }j>1,

_1a 1 _
(121) g =Y e (—p— (1+0(p, 1/2))) .

j j
Let R >1 and for n > 1, let m = m (n) satisfy

1 m

— < —<R.

R~ n—
For n > 1, let

1
Wmn = ﬁ Z |Re )\| 5|Re)\\/\/M'
AEA(Amn/am)

(a) Then

dwpmn = |7 log t| 2 dt.
in the sense that if g :[0,00) — R is continuous,

1
(1.22) lim [ g (t) dwpmn (t) = / g (t) [rlogt| ™/ dt.
0

n—oo

(b) Let f: (0,00) — R be continuous and nonnegative in (0,6) for
some 6 > 0. Then

(1.23) liminf/l f () dwpn (t) > /lf(t)|7rlogt|_1/2 dt.
0+ 0

n—0o0

The integral on the left is interpreted as excluding any masspoints at
0. The integral on the right may = oo.
(c) For € € (0,1),

(1.24)
2P, V2w | [T iy
gin;oTlog H Rer| |~/ ;‘77 logt| '~ dt.

[\
o

)\GA(Amn/am)y \‘/1;%
m
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Moreover,
V2T, V2T Py,
(1.25) nh_}rgo - log H Re

>\€A(Amn/am)a>\7£0

In terms of applications to Padé approximation, it would be very
useful to have estimates for the full det (A4,,,). This would of course be
possible if we can handle the eigenvalues close to 0. This suggests

Problem 1.5
Formulate conditions for det (A,,,) to be non-zero.
A more quantitative goal would be:

Problem 1.6
Estimate below the eigenvalue of smallest modulus of A,,,, under suit-
able conditions.

The most ambitious would be:

Problem 1.7
Formulate conditions that permit some form of asymptotics for det (Ap.,) -

This paper is organised as follows: in Section 2, we recall some results
from [8]. In Section 3, we prove the results. Throughout, C,C1, Cy, ...
denote constants independent of n, x, z,t and possibly other specified
parameters. The same symbol does not necessarily denote the same
constant in different occurrences.

Acknowledgement

Its is a privilege to dedicate this article to the 80th birthday of Dany
Leviatan. Smoothness plays a role in a lot of his research on polynomial
approximation, but of course the smoothness we discuss here is quite
different.

2. PRELIMINARIES
In this section, we recall a number of results from [§].

Theorem 2.1
Assume the hypotheses of Theorem 1.2. Fix k> 1. Then as n — oo,

<Amn>k (k—1)/2 1+o(1)
G Vk

(2.1) Tr =n(27p,,)

Proof
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See Theorem 3.1 in [8, p. 348]. A

Lemma 2.2
(a) Assume the hypotheses of Theorem 1.2. Then

2.2 A = +/2 1 1
(2-2) AeA(Iile/W' | = /2mp, (1+0(1))
and
1 >
(2.3) > mAP=o0(1).
n\’ Pm AEA(Amn/am)

(b) Assume the hypotheses of Theorem 1.4. Then

24 i Re()\) > —o(1
( ) AEA(Ilgl'r}z]':nl/am) e( )_ O( )
and
1
(2.5) - > [ReA=1+o0(1).
NEA(Amn /am)
Proof

(a) These are Theorem 1.2(I) in [8, p. 337] and Lemma 4.2(a) in [8, p.
354].

(b) See Lemma 6.1(a) in [8, p. 361] and Theorem 1.4(II) in [8, p. 338].
|

3. Proof of Theorems 1.2 and 1.4

We begin by replacing A by Re A or |A| in the eigenvalue counting
measures.

Lemma 3.1
(a) Assume the hypotheses of Theorem 1.4. Then for k> 1,

k
lim Y23 ‘ ReA P L
n— oo n NEA(Aon fam) \/ 7Tpm \/E

(b) Assume the hypotheses of Theorem 1.2. Then for k > 2,
. A\ 2mp A
lim Y22Fm

im > |

k

1

V2T P,

AeA(Amn/am
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Proof
(a) First let & > 2. Observe that if z = x + iy, then

k

k _

Re (%) =2 = Re <)z T g

) (S ()
]_
k
- > ( ) (—1)"2yia*,
J=2,7 even J
so that for some constant C' depending only on k,

[Re (2%) — 2] < Cy? 2|72

Using (2.2), and this last inequality,

%Re (Tr (imn>k]> - % Z (Re )\)k
m AEA(Amn /am)
B1) < O Y AP =o(va)'

AeA(Amn/am)

by (2.3). Next, let ¢ € (0,1). From (2.4), there exists N such that for
n > N, and for all A € A (A,.,/am), Re(A) > —e. Then

1 k k 2 k
0< - ( - )<— < 2.
<- > [ReAl" — (Re))") <~ > IRe \|" < 2¢
)\EA(Amn/am) )\EA(Amn/am),Re A<0
Hence
1 A\ 1 " -
— R - — < .
- e(TT <am ) ]) - Z IReA|"| <22+ 0 (v/Pm)
AEA(Amn /am)

Then Theorem 2.1 gives the result for £ > 2. If £k = 1, the result
follows from (2.5).
(b) Let k > 2. We first show there exists C' > 0 such that for z = x4y,

(3.2) ‘|z|k —Re (zk)‘ < O |2 7292
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If first |x| < 2]y|, then the left-hand side of (3.2) is bounded above by
C'ly|", and hence by C'|z|*"? y2. Now suppose that |z| > 2|y|. Then

‘|z|k —Re (zk)‘

(@) ey ey

7j=2,7 even

= [aff

2
< Clzf* (%) < Oz 22
So we have (3.2) in all cases. Then by (2.5),

1 1
= Y A= =Re (Tr
n n

AeA(Amn/am)

< oWm) Y AP =o(yvan)'

AEA(Amn/am)

by (2.3). Again Theorem 2.1 gives the result. B

Proof of Theorem 1.4

Recall that

1

Wmn = ﬁ Z |R€)\|5|Re>\‘/m.

AEA(Amn fam)
(a) Now by Lemma 3.1(a), for j > 0,
_ , IRe A\’
lim [ tdwm, (t) = > |Re)| (—
e AEA(Amn /am) V2T P
_ vy (e )

AEA(Amn/am)

S

1
= == +o).

The latter are the moments of the probability measure |7Tlogt\_1/ 2 dt
on [0, 1]. See the proof of Lemma 6.2 in [8, p. 364]. Hence

1
lim tjdwmn(t):/ t |mlogt| 2 dt.
0

n—0o0

As all {w,, } have support contained in a fixed compact set, (as follows
from (2.2)), the weak convergence in (1.22) follows.
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(b) Let € € (0,1) and

0, 0<t<e
h@):{ F(t), teleo00)

We assume f () > 0. Since for large enough n, w,,, has support in

[O, %} , we may assume that f vanishes in [2, 00). Then h is upper semi-

continuous in [0, 2], so there exists a decreasing sequence of continuous
functions {gx} on [0,2] with pointwise limit . We may extend each
gr to [0,00) by defining it to be constant in [2,00). Then for n large
enough so that the support of w,,, lies in [0, 2],

1
limsup/h(t) dw,n (1) < limsup/g;c (t) dwpmn (1) :/ w (1) |mlog t| V2,
n—00 n—00 0
by (a). Letting k — oo, gives, via the Monotone Convergence Theorem,
1
limsup/h(t) AWy (1) S/ h(t) |7 logt| 2 dt.
n—00 0

Similarly if we redefine h(¢) = 0, giving h_we obtain a lower semi-
continuous function h_. Proceeding as above, we obtain

1
lim inf / he (t) dwppn (1) > / h (t) |7 logt| /% dt.
0

n—o0

Next, from the definition of w,,,,,

0 < flewm({eh) = fle) max)/mW/n

< (1+o(1 €)\/2mp,,/n=o0(1

by (1.4) and (1.11). We deduce from all the above that

(3.3) lim / F () dwpm, () = / F (@) |mlogt|™/* dt.
We deduce that for each € > 0,

liminf/l F (1) dwpn (£) > /1f(t) | log t| /2 dt.
0+ €

n—oo

Now let ¢ — 0+ to obtain (1.23).
(c¢) Choose

1
ft) = t_llogg,t € (0,00).
Let € € (0,1). We obtain from (b),

V27Tpm Z lOg‘ V27Tpm
Re A

lim
n— o0 n

1
:7r_1/2/ = [log t|"/* dt.

AEA(Amn fam), \‘/R‘“‘—*‘z
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J_

That is, (1.24) holds. Then also, as log > 0if BeAl ¢

Tom

V2T P, V2Tp,, !
lim inf Y= Pm Z log VTP 7r_1/2/ =1 log t|*/* dt.
n—00 n Re A .

AeA(Amn/am),|Re A|>0

Now let ¢ — 0 and use divergence of the integral. Bl

Proof of Theorem 1.2
Recall that

1 2
T /T Z A0, /2mm

Pm AEA(Amn/am)

(a) We have for j > 0,

: 1 of MY
‘7 p—
oo = b T ()

Pm AEA(Amn /am

oy ()

AEA(Amn/am)
2
= 1 1
5 (o),
by Lemma 3.1(b). As shown in [8, p. 360, Proof of Lemma 5.2], the
unique probability distribution with these moments is ¢ ﬂlog 7 dt. So

1
. . 2

lim [ #dr,,, = / 't dt

n—o0 0 7 [log t|

As the supports of all {7,,,} are contained in a compact set, because
of (2.2), the weak convergence follows.

(b) This is the same as in the proof of Theorem 1.4(Db).

(c) Choose

1
f () =t?log ;,t € (0,00).
We obtain from (b),

V21, V2o, | L
lim Y= Pm Z ‘ TP _1/2/ = [log t|"/* dt.
n— oo n 5

)\EA(Amn/am) \/L_
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Hence also
V21p, V21, !
lim inf Y= Pm Z log ’+% > 7r_1/2/ " log t|*/? dt
n—oo n e

AEA(Amn /am ), A0

2 .
as terms excluded all have —@ > ¢~ Since

1
/ " [log t|'/? dt = oo,
0

it follows that

\/2 \/2
TP, Z lOg‘ TP,

)\ = Cn?

AEA(Amn/am))\#O

where (,, — 00 as n — oo. If det(A,,,) # 0, this gives

VIR ()
n 8 det (A fan]  om

V21p,,
|det (Amn)|1/n / |am|

= [det (Apn)|""" = |am| v/27p,, exp (V;T—p) |

= \/2mp,, log

=y
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