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Abstract. We study the expected number of positive zeros of Müntz polynomials with real
i.i.d. coefficients. For the standard Gaussian coefficients, we establish asymptotic results for
the expected number of positive zeros when the exponents of Müntz mononomials that span
our random Müntz polynomials have polynomial and logarithmic growth. We also present
many bounds on the expected number of zeros of random Müntz polynomials with various
real i.i.d. coefficients, including the case of arbitrary nontrivial real i.i.d. coefficients.

1. Introduction

Zeros of polynomials with random coefficients have been intensively studied for almost
one hundred years, beginning with the paper of Bloch and Pólya [1]. We refer to the book
[3], [12] and the survey [6] for information on early results. The literature on this subject
increased exponentially in the past three decades, so that we mention a very incomplete list
of recent papers such as [28], [20], [4], [21], [5], etc. Perhaps the most popular set of questions
in this field are related to the expected number of real zeros of random polynomials, where
an important role is played by the Kac-Rice integral formula, see [13, 14]. This paper is
devoted to the same topic, but in a more general context of random Müntz polynomials that
are spanned by monomials with arbitrary real exponents. Müntz polynomials were used in
classical analysis and approximation theory beginning with [19] and [27]. For a sequence of
distinct and non-negative real numbers {λk}∞k=1, we consider random Müntz polynomials

(1.1) Pn(x) =
n∑

k=0

ckx
λk , n ∈ N,

with λ0 = 0 and real i.i.d. coefficients {ck}∞k=0, and study the expected number of their
real zeros E [Nn ([a, b])] in an interval [a, b] ⊂ R. It is standard in the literature on random
polynomials, especially based on the Kac-Rice integral formula, to count every real zero only
once, disregarding multiplicities. We also follow this convention. Throughout this paper,
the i.i.d. random variables {ck}∞k=0 are assumed non-trivial, i.e., P(ck = 0) = q < 1. Since
λk ∈ R, we study the expected number of zeros of such polynomials on [0,∞), and especially
on [0, 1], under various conditions on the exponents {λk}∞k=1 and on the random coefficients
{ck}∞k=0.

In the case when the {λk}∞k=1 are a sparse set of integers and the {ck}∞k=0 are i.i.d. standard
Gaussian random variables, some useful estimates were established in [10], see also [2] for
earlier results in this direction. In particular, it was proved in [10] that for arbitrary integers
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Key words and phrases. Müntz polynomials, random coefficients, expected number of real zeros.

1



{λj}n−1
j=0 , we have

E [Nn ([0, 1])] ≤
2

π

√
n− 1

and moreover that for n ≥ 4 and suitable {λj}n−1
j=0 , we have

E [Nn ([0, 1])] ≥
π −

√
3

16π

√
n− 2 +

1

7
.

We significantly improve and generalize the above results by providing asymptotics for
E [Nn ([0, 1])] when the coefficients {ck}∞k=0 are i.i.d. standard Gaussian, and the exponents
{λk}∞k=1 of Müntz polynomials have polynomial and logarithmic growth. These results, ob-
tained via the Kac-Rice formula, are presented in Section 2. Section 3 contains many bounds
for the expected number of zeros of random Müntz polynomials. In particular, we prove the
upper bound of the form E [Nn ([0,∞))] ≤ C

√
n for all random Müntz polynomials with

very general real i.i.d. random coefficients. It is worth pointing out that our results include
sparse (or lacunary) random polynomials as a special case. All proofs for Section 2 are given
in Section 5, while proofs for Sections 3 and 4 are given in Sections 6 and 7 correspondingly.

Acknowledgments. This paper originated from the research within the American Institute
of Mathematics SQuaRE program “Random Polynomials.” The authors would like to thank
Oanh Nguyen and Hoi Nguyen for many discussions and helpful suggestions.

2. Asymptotic results based on the Kac-Rice formula

Throughout this section, we assume that our random Müntz polynomials (1.1) have i.i.d.
standard Gaussian coefficients. It is known that the Kac-Rice formula is valid for this kind
of random polynomial, see Proposition 1.1 in [18], so that we use the formula to find the
asymptotic results below. Define the kernel

Kn (x, y) =
n∑

j=0

(xy)λj , x, y ≥ 0,

and for non-negative integers j, k,

K(j,k)
n (x, y) =

∂j+k

∂xj∂yk
Kn (x, y) .

The Kac-Rice formula states that the density of real zeros is given by

(2.1) In (x) =

√
K

(1,1)
n (x, x)Kn (x, x)−K

(1,0)
n (x, x)2

Kn (x, x)
2 ,

so that the expected number of zeros over an interval [a, b] ⊂ [0,∞) is

(2.2) E [Nn ([a, b])] =
1

π

∫ b

a

In(x) dx,

We establish asymptotics for E [Nn ([0, 1])] when the exponents are of polynomial and
logarithmic growth. The Kac-Rice formula also allows us to find bounds for E [Nn ([0, 1])]
when the exponents are growing geometrically, as well as to present a general estimate for
In (x). In our first three results, we shall assume that

(2.3) λj = ϕ (j) , j ≥ 0,
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where ϕ : [0,∞) → [0,∞) is continuous and strictly increasing in [0,∞), with ϕ (0) = 0, and
ϕ′ is continuous and positive in (0,∞). We shall let ϕ[−1] denote its inverse function and

(2.4) Ψ (r) = ϕ′ (ϕ[−1] (r)
)
, r > 0.

First we deal with the exponents {λj}∞j=0 that are of polynomial growth.

Theorem 2.1. Assume that

(2.5) lim
r→∞

Ψ(r) /r = 0.

Let ∆ ∈ R and assume that for each fixed y > 0,

(2.6) lim
r→∞

Ψ(r)

Ψ (yr)
= y∆.

Assume moreover, that there is a measurable function g(y) and r0 such that for r ≥ r0 and
y > 0,

(2.7)
Ψ (r)

Ψ (yr)
≤ g (y)

while

(2.8)

∫ ∞

0

e−2y
(
1 + y2

)
g (y) dy < ∞.

Then as n → ∞,

(2.9) E [Nn ([0, 1])] =
d0
π
(1 + o(1)) log ϕ(n),

where

(2.10) d0 =
1

2

√
Γ (∆ + 3) Γ (∆ + 1)− Γ (∆ + 2)2

Γ (∆ + 1)2
.

Remark
The conditions on Ψ are similar to those defining regularly varying functions.

Examples
(I) Let

ϕ (t) = tβ, β > 0.

The above hypotheses are satisfied with

∆ = −1 +
1

β
.

so

(2.11) d0 =
1

2

√√√√√√Γ
(
2 + 1

β

)
Γ
(

1
β

)
− Γ

(
1 + 1

β

)2
Γ
(

1
β

)2 .

The above result becomes

(2.12) E [Nn ([0, 1])] =
d0β

π
(1 + o(1)) log n.
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In the ordinary polynomial case, where β = 1, we obtain d0 =
1
2
, so

E [Nn ([0, 1])] =
1

2π
(1 + o(1)) log n.

This agrees with the classical Kac result, where

4E [Nn ([0, 1])] = E [Nn (R)] =
2

π
(1 + o(1)) log n.

(II) Let β > 0, γ > 0, and

ϕ (t) = tβ (log (t+ 2))γ , t ≥ 0.

Here we still have ∆ = −1 + 1/β and also have (2.11)-(2.12). See Section 5 for a full deduc-
tion from Theorem 2.1.

Next we consider logarithmic growth:

Theorem 2.2. Let

λn = log(n+ 1), n ≥ 0.

Then

E [Nn ([0, 1])] =
1

π
(1 + o(1)) log log(n+ 1).

Throughout the paper C,C1, C2, ... denote positive constants that are independent of
n, x, t. The same symbol may be used to indicate different constants in different occurrences.
For the geometric growth of exponents, we give two-sided bounds:

Theorem 2.3. Let b > 1 and

λn = bn − 1, n ≥ 0.

Then for some C1, C2 > 0,

C1 ≤ E [Nn ([0, 1])] /
√
n ≤ C2.

The Kac-Rice formula also gives the following general bound that holds for rather arbitrary
real exponents {λk}∞k=1.

Theorem 2.4. For any sequence of distinct and non-negative real numbers {λk}∞k=1, satis-
fying

(2.13) lim inf
k→∞

λk

log k
= a > 0,

there is C > 0 such that

E[Nn([0, 1])] ≤ C
√

log n

√√√√log
n∑

k=1

λk, n ≥ 2.

This implies, in particular, that for exponents of at most polynomial growth, the expected
number of real zeros is of the order log n.

Corollary 2.5. If {λk}∞k=1 ⊂ N and λk = O(kp), where p ≥ 1, then E[Nn(R)] = O(log n).

Finally, we present some general estimates for the density of real zeros:
4



Theorem 2.6. (a) Let 0 < ρ < 1. There exists C1 > 0 such that for all distinct positive
{λk}∞k=1 , all n ≥ 2, and all x ∈ (0, ρ],

(2.14) In (x) ≤
C1

x
log n.

(b) Let R > 1. There exists C2 > 0 such that for all distinct positive {λk}∞k=1 , all n ≥ 2,
and all x ∈ [R,∞),

(2.15) In (x) ≤
C2

x
log n.

(c) For all distinct positive {λk}∞k=1 and all x ∈ (0,∞),

In (x) ≤
max1≤k≤n λk

x
.

In particular, if the sequence {λn}∞n=1 is bounded, so is {In (x)}∞n=1.

Remark. The upper bound log n for In (x) is best possible. For λj = log (j + 1) , j ≥ 0,
and x = e−1/2, it is shown in Section 5.3 that In (x) ∼ log n.

3. General bounds for the expected number of zeros

While the Kac-Rice formula (2.2) proved to be a very important tool for the study of
real zeros of random polynomials, it is only suitable for the case of Gaussian coefficients.
Moreover, even its generalizations are much more difficult to apply if the coefficients are not
Gaussian. In this section, we use a completely different approach, based on the counting of
sign changes in sums of coefficients, and provide upper bounds for the expected number of
zeros of Müntz polynomials with arbitrary exponents and very general random coefficients.

Our main deterministic tool for bounding the number of real roots from above is the
following rule of signs due to Laguerre [15, p. 9], see also Remark 10.4.5 in [23, p. 333].
Below, we use V (t1, . . . , tk) to denote the number of sign changes in the sequence of real
numbers {ti}ki=1.

Theorem 3.1 (Laguerre). For any polynomial f(x) =
∑n

k=0 akx
k with real coefficients,

define its partial sums by fk(x) =
∑k

i=0 aix
i, k = 0, . . . , n. If b > 0 and f(b) ̸= 0, then the

number of real zeros of f contained in the interval (0, b] does not exceed V (f0(b), . . . , fn(b)).

Applying Laguerre’s rule of signs with b = 1 to polynomials of the form (1.1), we imme-
diately obtain an important corollary.

Corollary 3.2. Let Pn be a deterministic polynomial with real coefficients of the form
(1.1), i.e., we assume that {λk}nk=1 ⊂ N is an increasing sequence. Define the sums sk :=∑k

i=0 ci, k = 0, . . . , n. If sn ̸= 0 then the number of zeros of Pn in (0, 1] does not exceed
V (s0, . . . , sn).

In fact, the above results count zeros even with multiplicities, so that the same upper
bounds obviously hold if we count without multiplicities. Corollary 3.2 is very useful for our
purpose because sums of random variables represent a central topic in probability theory.
We now recall a result due to Erdős and Hunt, see Theorem 1 in [7].
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Theorem 3.3 (Erdős and Hunt). If {ck}∞k=0 are independent real random variables with the
same symmetric and continuous distribution, then

E[V (s0, . . . , sn)] ≤
n∑

k=1

[k/2] + 1

k + 1

(
k

[k/2]

)
2−k(3.1)

where sk :=
∑k

i=0 ci, k = 0, . . . , n.

This result immediately implies upper bounds for the expected number of real zeros. We
first state them for regular polynomials with natural exponents on the real line, and then
deduce the corresponding results for Müntz polynomials with arbitrary real exponents on
the positive semi-axis by using an approximation argument.

Theorem 3.4. If {ck}∞k=0 are independent real random variables with the same symmetric
and continuous distribution, and {λk}∞k=1 ⊂ N, then

E[Nn([0, 1])] ≤
n∑

k=1

[k/2] + 1

k + 1

(
k

[k/2]

)
2−k <

√
n, n ∈ N,(3.2)

and

E[Nn(R)] ≤ 4
n∑

k=1

[k/2] + 1

k + 1

(
k

[k/2]

)
2−k < 4

√
n, n ∈ N.(3.3)

The version for general Müntz polynomials takes the following shape.

Theorem 3.5. Suppose that {ck}∞k=0 are i.i.d. real random variables with a common sym-
metric and absolutely continuous distribution, and {λk}∞k=1 are arbitrary distinct positive real
numbers. Then (3.2) holds and

E[Nn([0,∞))] ≤ 2
n∑

k=1

[k/2] + 1

k + 1

(
k

[k/2]

)
2−k < 2

√
n, n ∈ N.(3.4)

A result of Siegmund-Schultze and von Weizsäcker on one-dimensional random walks [26]
allows us to prove upper bounds on the expected number of positive zeros for polynomials
with random coefficients that are not required to have symmetric distribution.

Theorem 3.6. If {ck}∞k=0 are arbitrary i.i.d. real random variables and {λk}∞k=1 ⊂ N, then

E[Nn([0,∞))] = O(
√
n).(3.5)

If {ck}∞k=0 are i.i.d. real random variables with an absolutely continuous distribution, and
{λk}∞k=1 are arbitrary distinct positive real numbers, then (3.5) holds true.

Note that all bounds of the form O(
√
n) given in the results of this section are sharp even

for Gaussian coefficients, see Theorem 2.3.

4. Results that hold with probability one

Corollary 3.2 also allows to show that the expected number of real roots is bounded with
probability one for biased random coefficients.

6



Theorem 4.1. If {ck}∞k=0 are real i.i.d. random variables with E[c0] ̸= 0, and {λk}∞k=1 are
arbitrary distinct positive real numbers, then

lim sup
n→∞

E[Nn([0, 1])] < ∞(4.1)

holds with probability one.

The proof of Theorem 4.1 relies on the standard Law of Large Numbers, which gives that
the sums of coefficients do not change sign for all large n ∈ N. If we use other versions for
the Law of Large Numbers, we can even relax conditions on the coefficients. For example,
Theorem 12 in [22, p. 272] gives the following statement, with the same proof as for our
Theorem 4.1.

Theorem 4.2. Let {λk}∞k=1 be arbitrary distinct positive real numbers. Suppose that {ck}∞k=0

are real independent random variables, and there is ε > 0 such that either E[ck] ≥ ε for
all large k, or E[ck] ≤ −ε for all large k. Let {ak}∞k=0 be any sequence of positive numbers
strictly increasing to infinity, and such that an = O(n). If for a fixed p ∈ (1, 2] we have that

(4.2)
∞∑
k=0

E[|ck − E[ck]|p]
apk

< ∞,

then (4.1) holds with probability one.

5. Proofs for Section 2

5.1. Preliminary Estimates. First we estimate the contribution from zeros in a neighbor-
hood of 0:

Lemma 5.1. If λ0 = 0 and λj > 0, j ≥ 1, then for 0 < c < 1,∫ c

0

In (x) dx ≤ Kn

(
c1/2, c1/2

)
.

Proof. From (2.1), and as Kn (x, x) ≥ 1,

In (x) ≤
√

K
(1,1)
n (x, x) =

√√√√ n∑
j=1

λ2
jx

2λj−2 ≤
n∑

j=1

λjx
λj−1,

by the inequality
√
a+ b ≤

√
a+

√
b for a, b ≥ 0. Then∫ c

0

In (x) dx ≤
n∑

j=1

cλj ≤ Kn

(
c1/2, c1/2

)
.

□

Next, we establish a compact expression for the numerator in In (x). In the sequel, we let

(5.1) ∆n (x) =
n∑

j,k=0

x2λjx2λk (λj − λk)
2 .
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Lemma 5.2.

(5.2) K(1,1)
n (x, x)Kn (x, x)−K(1,0)

n (x, x)2 =
∆n (x)

2x2
.

Proof. The left-hand side equals

1

x2

(
n∑

j=0

λ2
jx

2λj

)(
n∑

j=0

x2λj

)
− 1

x2

(
n∑

j=0

λjx
2λj

)2

=
1

x2

{
n∑

j=0

n∑
k=0

(
λ2
j − λjλk

)
x2λjx2λk

}

=
1

x2

{∑
k>j

x2λjx2λk
[
λ2
j − 2λjλk + λ2

k

]}
=

∆n (x)

2x2
.

□

Next, we estimate the sum ∆n (x) by an integral. Let

(5.3) Jn (x) =

∫ n

0

∫ n

0

x2(ϕ(s)+ϕ(t)) (ϕ (s)− ϕ (t))2 ds dt.

For fixed x ∈ (0, 1), let

(5.4) G (s, t) = log
[
x2(ϕ(s)+ϕ(t)) (ϕ (s)− ϕ (t))2

]
, s, t ≥ 0,

and

(5.5) h (t) = ϕ[−1]
(
ϕ (t) + |log x|−1) .

Here, ϕ[−1] is the inverse function of ϕ.

Lemma 5.3. Fix 0 < x < 1 and t > 0.
(a) As a function of s, G (s, t) decreases in (0, t), increases in (t, h (t)) and decreases in
(h (t) ,∞) .
(b)

max
s∈[0,t]

eG(s,t) = eG(0,t) = x2ϕ(t)ϕ (t)2 ;

max
s∈[t,∞]

eG(s,t) = eG(h(t),t) = x4ϕ(t) (e |log x|)−2 .

(c) x2ϕ(t)ϕ (t)2 increases as a function of t for ϕ (t) < 1
|log x| and decreases thereafter. Moreover

max
t≥0

x2ϕ(t)ϕ (t)2 = (e |log x|)−2 .

Proof. (a) This follows from

∂G

∂s
= 2ϕ′ (s)

[
log x+

1

ϕ (s)− ϕ (t)

]
for s ̸= t as well as the fact that ϕ′ > 0 in (0,∞).
(b) This follows from (a).
(c) We see that

d

dt
log
(
x2ϕ(t)ϕ (t)2

)
= 2ϕ′ (t)

[
log x+

1

ϕ (t)

]
,

8



so that the maximum occurs when ϕ (t) = 1
|log x| . □

Lemma 5.4. Let

En (x) = 4 (e |log x|)−2

[
3

2
+

∫ n

0

x4ϕ(s)ds

]
+ 2

∫ n

0

x2ϕ(s)ϕ (s)2 ds.

Then

(5.6) |∆n (x)− Jn (x)| ≤ En (x) .

Proof. Fix t > 0. Choose an integer r such that h (t) ∈ (r, r+1]. If h (t) > n, redefine r = n.
Then using the previous lemma,

n∑
j=0

eG(j,t) =

(
r−1∑
j=0

+
r+1∑
j=r

+
n∑

j=r+2

)
eG(j,t)

≤ x2ϕ(t)ϕ (t)2 +

∫ r

0

eG(s,t)ds+ 2x4ϕ(t) (e |log x|)−2

+

∫ n

r+1

eG(s,t)ds

≤
∫ n

0

eG(s,t)ds+ x2ϕ(t)ϕ (t)2 + 2x4ϕ(t) (e |log x|)−2 .

Then applying this with t = k,

∆n (x) =
n∑

k=0

n∑
j=0

eG(j,k)

≤
n∑

k=0

(∫ n

0

eG(s,k)ds+ x2ϕ(k)ϕ (k)2 + 2x4ϕ(k) (e |log x|)−2

)

=

∫ n

0

(
n∑

k=0

eG(s,k)

)
ds+

n∑
k=0

x2ϕ(k)ϕ (k)2 + 2 (e |log x|)−2
n∑

k=0

x4ϕ(k)
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≤
∫ n

0

(∫ n

0

eG(s,t)dt+ x2ϕ(s)ϕ (s)2 + 2x4ϕ(s) (e |log x|)−2

)
ds

+
n∑

k=0

x2ϕ(k)ϕ (k)2 + 2 (e |log x|)−2
n∑

k=0

x4ϕ(k)

= Jn (x) + 2 (e |log x|)−2

{∫ n

0

x4ϕ(s)ds+
n∑

k=0

x4ϕ(k)

}

+

{∫ n

0

x2ϕ(s)ϕ (s)2 ds+
n∑

k=0

x2ϕ(k)ϕ (k)2
}

≤ Jn (x) + 4 (e |log x|)−2

[
1 +

∫ n

0

x4ϕ(s)ds

]
+ 2 (e |log x|)−2

+ 2

∫ n

0

x2ϕ(t)ϕ (t)2 dt

= Jn (x) + En (x) ,

by the previous lemma. In a very similar way, we can establish the lower bound

∆n (x) ≥ Jn (x)− En (x) .

□

We need an alternative form for Jn (x) and the error term En (x) :

Lemma 5.5. Let 0 < x < 1, and define

(5.7) H (y, x) = Ψ

(
1

|log x|

)
/Ψ

(
y

|log x|

)
.

We have the following:
(a)

Jn (x) = |log x|−4Ψ

(
1

|log x|

)−2

(5.8)

×
∫ ϕ(n)|log x|

0

∫ ϕ(n)|log x|

0

e−2(y+z) (y − z)2H (y, x)H (z, x) dy dz.

(b)

En (x) ≤ |log x|−3

[
|log x|+Ψ

(
1

|log x|

)−1 ∫ ϕ(n)|log x|

0

[
e−4y + 2e−2yy2

]
H (y, x) dy

]
.(5.9)

(c)

0 ≤ Kn (x, x)− |log x|−1Ψ

(
1

|log x|

)−1 ∫ ϕ(n)|log x|

0

e−2yH (y, x) dy ≤ 1.(5.10)

Proof. (a) Make the substitution

y = ϕ (s) |log x| and z = ϕ (t) |log x|
10



in the integral (5.3) defining Jn (x). We obtain

Jn (x) =

∫ n

0

∫ n

0

x2(ϕ(s)+ϕ(t)) (ϕ (s)− ϕ (t))2 ds dt

(5.11)

= |log x|−4

∫ ϕ(n)|log x|

0

∫ ϕ(n)|log x|

0

e−2(y+z) (y − z)2
dy

Ψ
(

y
|log x|

) dz

Ψ
(

z
|log x|

)
= |log x|−4Ψ

(
1

|log x|

)−2 ∫ ϕ(n)|log x|

0

∫ ϕ(n)|log x|

0

e−2(y+z) (y − z)2H (y, x)H (z, x) dy dz.

(b) Next, the substitution y = ϕ (s) |log x| gives

En (x) = 4 (e |log x|)−2

[
3

2
+

∫ n

0

x4ϕ(s)ds

]
+ 2

∫ n

0

x2ϕ(s)ϕ (s)2 ds

= 4 (e |log x|)−2

3
2
+ |log x|−1

∫ ϕ(n)|log x|

0

e−4y dy

Ψ
(

y
|log x|

)


+ 2 |log x|−3

∫ ϕ(n)|log x|

0

e−2yy2
dy

Ψ
(

y
|log x|

)
≤ |log x|−3

[
|log x|+Ψ

(
1

|log x|

)−1 ∫ ϕ(n)|log x|

0

[
e−4y + 2e−2yy2

]
H (y, x) dy

]
.

(c) Here as above,

Kn (x, x) ≤ 1 +

∫ n

0

x2ϕ(s)ds

= 1 + |log x|−1Ψ

(
1

|log x|

)−1 ∫ ϕ(n)|log x|

0

e−2yH (y, x) dy.

Similarly,

Kn (x, x) ≥
∫ n

0

x2ϕ(s)ds

= |log x|−1Ψ

(
1

|log x|

)−1 ∫ ϕ(n)|log x|

0

e−2yH (y, x) dy.

Then (5.10) follows. □

5.2. Proof of Theorem 2.1. Most of the zeros cluster around 1. Accordingly, we begin
with

Lemma 5.6. Let ∆ ∈ R. Assume the hypotheses (2.5)-(2.8) of Theorem 2.1. For any
sequence {xn} in (0, 1) with limit 1, and

(5.12) lim
n→∞

ϕ (n) |log xn| = ∞,
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we have

(5.13) lim
n→∞

|log xn|2 In (xn)
2 = d20.

Proof. Recall the definition (5.7) of H (y, x). First note that by Lebesgue’s Dominated
Convergence Theorem and our hypotheses (2.6)-(2.8),

lim
n→∞

∫ ϕ(n)|log xn|

0

e−2yH (y, xn) dy =

∫ ∞

0

e−2yy∆dy = 2−∆−1Γ (1 + ∆) .

Thus from (5.10) (we are implicitly using (2.5)),

(5.14) lim
n→∞

|log xn|Ψ
(

1

|log xn|

)
Kn (xn, xn) = 2−∆−1Γ (1 + ∆) .

Also, ∫ ∞

0

∫ ∞

0

e−2(y+z) (y − z)2 g (y) g (z) dy dz

≤ 4

(∫ ∞

0

e−2yy2g (y) dy

)(∫ ∞

0

e−2zg (z) dz

)
< ∞,

by our hypothesis (2.8). Again, Lebesgue’s Dominated Convergence Theorem gives

lim
n→∞

∫ ϕ(n)|log xn|

0

∫ ϕ(n)|log xn|

0

e−2(y+z) (y − z)2H (y, xn)H (z, xn) dy dz(5.15)

=

∫ ∞

0

∫ ∞

0

e−2(y+z) (y − z)2 y∆z∆dy dz

= 2

(∫ ∞

0

e−2yy∆+2dy

)(∫ ∞

0

e−2yy∆dy

)
− 2

(∫ ∞

0

e−2yy∆+1dy

)2

= 2−2∆−3
{
Γ (∆ + 3) Γ (∆ + 1)− Γ (∆ + 2)2

}
=: c0,

say. Then from Lemmas 5.4 and 5.5(a),

|log xn|4Ψ
(

1

|log xn|

)2

∆n (xn)

= |log xn|4Ψ
(

1

|log xn|

)2

{Jn (xn) +O (E (xn))}

= c0 +O

(
|log xn|Ψ

(
1

|log xn|

))
+ o (1)

= c0 + o (1) ,

by (2.5). Combining this and (5.14) gives

lim
n→∞

|log xn|2 In (xn)
2 = lim

n→∞

|log xn|4Ψ
(

1
|log xn|

)2
∆n (xn)

|log xn|2Ψ
(

1
|log xn|

)2
2x2

nKn (xn, xn)

=
c0

2 (2−∆−1Γ (1 + ∆))2
= d20,

12



recall (2.10). □

Proof of Theorem 2.1. For a suitable sequence {εn} ⊂ (0, 1) with limit 0, and a suitable
sequence {ζn} with limit ∞, we split

E [Nn ([0, 1])] =
1

π

(∫ 1−εn

0

+

∫ 1−ζn/ϕ(n)

1−εn

+

∫ 1

1−ζn/ϕ(n)

)
In (x) dx.

We shall assume that ζn → ∞ so slowly that

(5.16) ζn = o (log ϕ (n)) .

Now we choose the sequence {εn}. By Lemma 5.1, if c ∈ (0, 1) ,∫ c

0

In (x) dx ≤ Kn

(
c1/2, c1/2

)
.

Here by Lemma 5.5(c), and our hypotheses (2.7)-(2.8), if c is close enough to 1, we have for
all n ≥ 1,

Kn

(
c1/2, c1/2

)
≤
∣∣log c1/2∣∣−1

Ψ

(
1

|log c1/2|

)−1 ∫ ∞

0

e−2yg (y) dy + 1.

It follows that for each c ∈ (0, 1), there is a constant C1 (c) such that

sup
n

∫ c

0

In (x) dx ≤ C1 (c) .

Hence if εn → 0 sufficiently slowly,

(5.17)

∫ 1−εn

0

In (x) dx = o (log ϕ (n)) .

Next, from Lemma 5.6, and noting that (5.12) holds uniformly in this range of x, and then
using the substitution t = |log x| ⇔ x = e−t,∫ 1−ζn/ϕ(n)

1−εn

In (x) dx =

∫ 1−ζn/ϕ(n)

1−εn

d0 |log x|−1 (1 + o (1)) dx(5.18)

= d0 (1 + o (1))

∫ |log(1−εn)|

|log(1−ζn/ϕ(n))|
t−1e−tdt

= d0 (1 + o (1))

∫ εn(1+o(1))

(ζn/ϕ(n))(1+o(1))

t−1dt

= d0 (1 + o (1)) log (εnϕ (n) /ζn)

= d0 (1 + o (1)) log ϕ (n) ,

if εn → 0 sufficiently slowly and by (5.16). Finally there is the elementary estimate

In (x) ≤
ϕ (n)√
2x

,

as follows from (5.1) and (5.2), so for large enough n,∫ 1

1−ζn/ϕ(n)

In (x) dx ≤ Cζn = o (log ϕ (n)) ,

13



recall (5.16). Combining this and (5.17)-(5.18), gives (2.9). □

Example 1
Let β > 0, and

ϕ (t) = tβ.

Here
Ψ (t) = ϕ′ (ϕ[−1] (t)

)
= βt1−1/β.

Also H defined by (5.7) satisfies

H (y, x) = y1/β−1.

All the requirements are met and then we can take g (y) = y1/β−1. Also ∆ = −1 + 1
β
. The

necessary integrals converge.

Example 2
Let β > 0, γ > 0 and

ϕ (t) = tβ (log (t+ 2))γ , t ≥ 0.

We show that we can still choose ∆ = −1+ 1
β
and find a function g satisfying the conditions

of Theorem 2.1. Firstly,

(5.19)
ϕ′ (t)

ϕ (t)
=

β

t
+

γ

(2 + t) log (2 + t)
=

β

t
[1 + f (t)] ,

where

f (t) =
γ

β

t

(2 + t) log (2 + t)
, t ≥ 0.

Note that f is continuous, nonnegative, bounded in [0,∞) and

lim
t→∞

f (t) = 0.

Next, from (5.19),
Ψ (s)

s
=

β

ϕ[−1] (s)

[
1 + f

(
ϕ[−1] (s)

)]
.

This already gives our requirement (2.5). Next,

(5.20)
Ψ (r)

Ψ (ry)
=

1

y

ϕ[−1] (ry)

ϕ[−1] (r)

1 + f
(
ϕ[−1] (r)

)
1 + f (ϕ[−1] (ry))

.

Here

s1/β = ϕ[−1] (s)
(
log
(
ϕ[−1] (s) + 2

))γ/β
⇒ 1

β
log s = log ϕ[−1] (s) +

γ

β
log log

(
ϕ[−1] (s) + 2

)
.(5.21)

This gives

lim
s→∞

log ϕ[−1] (s)

log s
=

1

β
.

Next from (5.20) and the definition of ϕ,

(5.22)
Ψ (r)

Ψ (ry)
= y−1+ 1

β

[
log
(
ϕ[−1] (r) + 2

)
log (ϕ[−1] (ry) + 2)

]γ/β
1 + f

(
ϕ[−1] (r)

)
1 + f (ϕ[−1] (ry))

,
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so for fixed y > 0,

lim
r→∞

Ψ(r)

Ψ (ry)
= y−1+ 1

β lim
r→∞

[
log r

log ry

]γ/β
= y−1+1/β.

Thus we can choose ∆ = −1 + 1/β. Next, we show there is a dominating function g. We
consider three ranges of y :
(I) y ≥ 1.
Here (5.22), the boundedness and nonnegativity of f , as well as the monotonicity of ϕ[−1],
give

Ψ (r)

Ψ (ry)
≤ Cy−1+ 1

β .

(II) y < 1 and ry ≤ 2.
Here r ≤ 2/y, so

Ψ (r)

Ψ (ry)
≤ Cy−1+ 1

β

[
log
(
ϕ[−1] (2/y) + 2

)
log 2

]γ/β

≤ Cy−1+ 1
β

(
log

2

y

)γ/β

.(5.23)

(III) y < 1 and ry ≥ 2.
Here since log r

log(ry)
is a decreasing function of r if r ≥ 2/y, so

log
(
ϕ[−1] (r) + 2

)
log (ϕ[−1] (ry) + 2)

≤ C
log r

log (ry)
≤ C

log (2/y)

log 2
,

and then we again get (5.23). In summary, we have for y ≥ 0,

Ψ(r)

Ψ (ry)
≤ g (y) = cy−1+1/β

{
1, y ≥ 1(

log 2
y

)γ/β
, 0 < y < 1

.

So we have satisfied all the requirements of Theorem 2.1.

5.3. Proof of Theorem 2.2. The approach is similar to that of the previous section, but
some parts require more care. Throughout this section, we let ϕ (j) = log (j + 1) , j ≥ 0, and

(5.24) X = X (x) = 2 log x+ 1, x ∈ (0, 1) .

We separately consider x smaller or larger than e−1/2.

Lemma 5.7. Let (xn) ⊂
(
0, e−1/2

)
with

(5.25) lim
n→∞

X (xn) = 0 but lim
n→∞

|X (xn)| log n = ∞.

Then

(5.26) In (xn) = e1/2 |X (xn)|−1 (1 + o (1)) .

Proof. First observe that for x ∈ (0, 1) ,

Kn (x, x) =
n+1∑
k=1

k2 log x ≤ 1 +

∫ n+1

1

t2 log xdt =

{
1 + (n+1)X−1

X
, X ̸= 0

1 + log (n+ 1) , X = 0
.(5.27)
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Similarly

(5.28) Kn (x, x) ≥
∫ n+2

1

t2 log xdt =

{
(n+2)X−1

X
, X ̸= 0

log (n+ 2) , X = 0
.

Then if {xn} satisfies (5.25), we see that as n → ∞, nX(xn) = eX(xn) logn → 0 and then (5.27),
(5.28) give

(5.29) Kn (xn, xn) =
1 + o (1)

|X (xn)|
.

Next, recall that (5.6) holds, with Jn given by (5.3). Here the substitution u = ϕ (s) =
log (s+ 1) , v = ϕ (t) = log (t+ 1) gives

Jn (x) =

∫ n

0

∫ n

0

x2(ϕ(s)+ϕ(t)) (ϕ (s)− ϕ (t))2 ds dt(5.30)

=

∫ log(n+1)

0

∫ log(n+1)

0

x2(u+v) (u− v)2 eu+v du dv

= |X|−4

∫ |X| log(n+1)

0

∫ |X| log(n+1)

0

e−(y+z) (y − z)2 dy dz,

where we have made the further substitution y = |X|u, z = |X| v, and we are now assuming
x < e−1/2, so that X < 0. If we now assume (5.25), we obtain

Jn (xn) = |X (xn)|−4

(∫ ∞

0

∫ ∞

0

e−(y+z) (y − z)2 dy dz + o (1)

)
= 2 |X (xn)|−4

(∫ ∞

0

e−yy2dy

∫ ∞

0

e−ydy −
(∫ ∞

0

e−yydy

)2

+ o (1)

)
= 2 |X (xn)|−4 (1 + o (1)) .

The error term from Lemma 5.4 is

En (xn) = 4 (e |log xn|)−2

[
3

2
+

∫ n+1

1

t2X(xn)−2dt

]
+ 2

∫ n+2

1

tX(xn)−1 (log t)2 dt.(5.31)

Since xn → e−1/2 and X (xn) → 0, the first term in the last right-hand side is bounded.
Next, the substitution y = |X (xn)| log t gives∫ n+2

1

tX(xn)−1 (log t)2 dt = |X (xn)|−3

∫ |X(xn)| log(n+2)

0

e−yy2dy.

So En (xn) = O
(
|X (xn)|−3). Then from Lemma 5.4, and (5.29),

∆n (x) = 2 |X (xn)|−4 (1 + o (1))

⇒ I2n (xn) =
∆n (xn)

2x2
nKn (xn, xn)

2 = e |Xn|−2 (1 + o (1)) .

□

Next, we consider x > e−1/2 :
16



Lemma 5.8. Let {xn} ⊂
(
e−1/2, 1

)
with

(5.32) lim
n→∞

X (xn) log n = ∞,

and

(5.33) lim
n→∞

|log xn|−1 n−X(xn) = 0.

Then

(5.34) In (xn) = (xnX (xn))
−1 (1 + o (1)) .

Proof. Note first that by (5.32),

lim
n→∞

nX(xn) = ∞.

Then (5.27), (5.28) give

(5.35) Kn (xn, xn) =
nX(xn)

X (xn)
(1 + o (1)) ,

recall X (xn) > 0. Next, as at (5.30), but since X (xn) > 0,

Jn (xn) = X (xn)
−4

∫ X(xn) log(n+1)

0

∫ X(xn) log(n+1)

0

ey+z (y − z)2 dy dz.

We can evaluate this by separating the integrals and integrating by parts. Let Zn =
X(xn) log (n+ 1):

Jn (xn) = 2 |X (xn)|−4

{(∫ Zn

0

eyy2dy

)(∫ Zn

0

eydy

)
−
(∫ Zn

0

eyydy

)2
}

(5.36)

= 2 |X (xn)|−4

{ (
eZnZ2

n − 2
(
eZnZn −

(
eZn − 1

))) (
eZn − 1

)
−
(
eZnZn −

(
eZn − 1

))2 }
= 2 |X (xn)|−4

{
eZnZ2

n

(
eZn − 1

)
− 2eZnZn

(
eZn − 1

)
+ 2

(
eZn − 1

)2
−e2ZnZ2

n + 2eZnZn

(
eZn − 1

)
−
(
eZn − 1

)2
}

= 2 |X (xn)|−4
{
−eZnZ2

n +
(
eZn − 1

)2}
= 2 |X (xn)|−4 n2X(xn) (1 + o (1)) .

We have to estimate the error term En (xn) differently in different ranges. Recall that

En (xn) = 4 (e |log xn|)−2

[
3

2
+

∫ n+1

1

t2X(xn)−2dt

]
+ 2

∫ n+2

1

tXn(xn)−1 (log t)2 dt.(5.37)

Here except when |log xn| is small, the dominant term is (making the substitution y =
X (xn) log t) ∫ n+2

1

tXn(xn)−1 (log t)2 dt = X (xn)
−3

∫ X(xn) log(n+2)

0

eyy2dy(5.38)

= O
(
X (xn)

−3 [(log n)X (xn)]
2 elognX(xn)

)
= o

(
X (xn)

−3 n2X(xn)
)
.
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(A) (xn) ⊂
(
e−1/2, e−1/5

)
.

Here |log xn| ∼ 1, so from Lemma 5.4 and (5.36)-(5.38),

(5.39) ∆n (xn) = 2X (xn)
−4 n2X(xn) (1 + o (1)) .

(B) xn ≥ e−1/5 and (5.33) holds.
Here 2X (xn)− 2 > −1, and X (xn) ∼ 1, so from (5.32), (5.33) and (5.36)-(5.38),

E (xn) = O
(
|log xn|−2 [1 + n2X(xn)−1]

)
+ o

(
n2X(xn)

)
= o

(
n2X(xn)

)
,

so again (5.39) holds. Finally, (5.35), (5.36), and (5.6), give the result. □

Remark
Although we shall not use it in the proof of Theorem 2.2, we note that a simpler calculation
shows that

Jn
(
e−1/2

)
=

1

6
(log (n+ 1))4 ;

Kn

(
e−1/2, e−1/2

)
= (1 + o(1)) log n;

En

(
e−1/2

)
= O (1) ,

and hence

In
(
e−1/2

)
=

√
e

12
(1 + o(1)) log n.

Proof of Theorem 2.2. We split

πE [Nn ([0, 1])]

=


∫ e−1/2ρn
0

+
∫ e−1/2(1− ζn

log(n+1))
e−1/2ρn

+
∫ e−1/2(1+ ζn

log(n+1))
e−1/2(1− ζn

log(n+1))

+
∫ exp(− logn

n )
e−1/2(1+ ζn

log(n+1))
+
∫ 1

exp(− logn
n )

 In (x) dx

= I(1) + I(2) + I(3) + I(4) + I(5).

Here ρn → 1 sufficiently slowly, while ζn → ∞ and

(5.40) ζn = o (log log n) .

The main contribution comes from I(2) and I(4).
First integral I(1)

We observe first that if c ∈
(
0, e−1/2

)
,∫ c

0

I2n (x) ≤
∫ c

0

K(1,1)
n (x, x) dx

=
n∑

j=1

λ2
j

2λj − 1
c2λj−1

≤ 1

c log(4/e)

∞∑
j=1

(log (j + 1))2 (j + 1)X(c)−1 < ∞.
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As this bound is independent of n, we can choose c = ρne
−1/2, with ρn → 1 sufficiently

slowly so that

(5.41)

∫ ρne−1/2

0

I2n (x) dx = o (log log n)2 .

We may also assume that

(5.42) |log |log ρn|| = o (log log n) .

Then Cauchy-Schwarz shows that

I(1) =

∫ ρne−1/2

0

In (x) dx = o (log log n) .

Second integral I(2)

From Lemma 5.7, and then making the substitution x = exp
(
−1

2
− u

2

)
⇔ u = − (2 log x+ 1) =

−X (x) ,

I(2) =

∫ e−1/2(1− ζn
log(n+1))

e−1/2ρn

In (x) dx

= (1 + o (1)) e1/2
∫ e−1/2(1− ζn

log(n+1))

e−1/2ρn

1

|X (x)|
dx

= (1 + o (1))
1

2

∫ 2|log ρn|

2ζn
logn

(1+o(1))

1

u
e−u/2du

= (1 + o (1))
1

2

∫ 2|log ρn|

2ζn
logn

(1+o(1))

1

u
du

= (1 + o (1))
1

2

{
log

log n

ζn |log ρn|

}
=

1

2
(1 + o(1)) log log n,

by (5.40) and (5.42).
Third integral I(3)

Since λj ≤ log (n+ 1) for j ≤ n, so In (x) ≤ log(n+1)
2x

and hence

I(3) =

∫ e−1/2(1+ ζn
log(n+1))

e−1/2(1− ζn
log(n+1))

In (x) dx

≤ Cζn = o (log log n) ,

by (5.40).
Fourth Integral I(4)
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By Lemma 5.8, and then making the substitution x = exp
(
−1

2
+ u

2

)
⇔ u = X (x) ,

I(4) =

∫ exp(− logn
n )

e−1/2(1+ ζn
log(n+1))

In (x) dx

= (1 + o (1))

∫ exp(− logn
n )

e−1/2(1+ ζn
log(n+1))

1

xX (x)
dx

= (1 + o (1))
1

2

∫ 1+o(1)

2ζn
log(n+1)

(1+o(1))

du

u

= (1 + o (1))
1

2
log

(
log (n+ 1)

2ζn

)
= (1 + o (1))

1

2
log log n,

by (5.40).
Fifth Integral I(5)

Here

I(5) ≤ C (log n) (1− exp

(
− log n

n

)
) = o (log log n) .

Finally adding the estimates for I(j), 1 ≤ j ≤ 5, gives

E [Nn ([0, 1])] =
1

π
(1 + o(1)) log log n.

□

5.4. Proof of Theorem 2.3. In this section, we let b > 1 and

ϕ (s) = bs − 1, s ≥ 0.

Unfortunately the error term En (x) in Lemma 5.4 is of the same order as the main term
Jn (x) and so we have to proceed differently. We first estimate some tails:

Lemma 5.9. (a) Let {ζn} be a sequence with limit ∞ but with

(5.43) ζn = o
(√

n
)
.

Then

(5.44)

∫ 1

1−ζn/bn
In (x) dx = o

(√
n
)
.

(b) Let {εn} ⊂ (0,∞) decrease to 0 but with nεn → ∞. Then

(5.45)

∫ exp(− 1
nεn

)

0

In (x) dx = o
(√

n
)
.

Proof. (a) This follows from the trivial bound In (x) ≤ λn = bn − 1, so that∫ 1

1−ζn/bn
In (x) dx ≤ ζn.

20



(b) Let e−1/2 < c < 1. Now∫ c

0

I2n (x) dx ≤
∫ c

0

K(1,1)
n (x, x) dx ≤ C

c

n∑
j=1

bjc2b
j

,

where C is independent of n, c. Let t0 = − log(2|log c|)
log b

> 0. The function f (t) = btc2b
t
is

increasing in (0, t0) and decreasing in (t0,∞), and moreover,

max
t>0

f (t) = f (t0) =
1

2e |log c|
,

so we may continue this as∫ c

0

I2n (x) dx ≤ C

[∫ ∞

0

btc2b
t

dt+
1

e |log c|

]
= C

[
1

2 (log b) |log c|

∫ ∞

2|log c|
e−udu+

1

e |log c|

]
≤ C

|log c|
,

where C is independent of n, c. Choosing c = exp
(
− 1

nεn

)
, we obtain via Cauchy-Schwarz,∫ c

0

In (x) dx ≤

√
c

C

|log c|
≤ C

√
εnn.

□

Next, we obtain asymptotics for Kn and Jn:

Lemma 5.10. Let {xn} ⊂ (0, 1) be a sequence with

(5.46) lim
n→∞

xn = 1 and lim
n→∞

bn |log xn| = ∞.

(a)

Kn (xn, xn) =
log |log xn|−1

log b
+O (1) .

(b)

Jn (xn) =
log |log xn|−1

2 (log b)2 (log xn)
2 (1 + o (1)) .

Proof. (a) Monotonicity and the substitution u = 2bt |log x| give

Kn (x, x) ≤ 1 +
1

x2

∫ ∞

0

x2btdt = 1 +
1

x2 log b

∫ ∞

2|log x|
e−udu

u
.

An integration by parts shows that∫ ∞

|2 log xn|
e−uu−1 du = x2

n log |2 log xn|−1 +

∫ ∞

0

e−u log u du+ o (1) .

Then

Kn (xn, xn) ≤
log |log xn|−1

log b
+O (1) .
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Similarly,

Kn (x, x) ≥ 1

x2

∫ n+1

0

x2btdt

=
1

x2 log b

{
x2 log |2 log x|−1 − e−2bn+1| log x|

2bn+1| log x|
+

∫ 2bn+1|log x|

2|log x|
e−u log u du

}
,

so that

Kn (xn, xn) ≥
log |log xn|−1

log b
+O (1) .

(b) The substitutions u = bs, v = bt, followed by y = 2 |log x|u, z = 2 |log x| v, give

Jn (x) =

∫ n

0

∫ n

0

x2(bs+bt−2) (bs − bt
)2

ds dt

=
1

x4 (log b)2

∫ bn

1

∫ bn

1

x2(u+v) (u− v)2
du

u

dv

v

=
1

x4 (log b)2 (2 log x)2

∫ bn|2 log x|

|2 log x|

∫ bn|2 log x|

|2 log x|
e−(y+z) (y − z)2

dy

y

dz

z

=
2

x4 (log b)2 (2 log x)2


(∫ bn|2 log x|

|2 log x| e−yy dy
)(∫ bn|2 log x|

|2 log x| e−zz−1 dz
)

−
(∫ bn|2 log x|

|2 log x| e−y dy
)2

 .

As x = xn satisfies the hypotheses (5.46),

Jn (xn) =
2

x4
n (log b)

2 (2 log xn)
2(5.47)

×

{ (∫∞
0

e−yy dy + o (1)
) (∫∞

|2 log xn| e
−zz−1 dy + o (1)

)
− (1 + o (1))2

}

=
2

x4
n (log b)

2 (2 log xn)
2

{∫ ∞

|2 log xn|
e−zz−1 dz − 1 + o (1)

}
.

Here an integration by parts shows that∫ ∞

|2 log xn|
e−zz−1 dz = x2

n log |2 log xn|−1 +

∫ ∞

0

e−z log z dz + o (1)

= x2
n log |log xn|−1 +O (1) .

Substituting in (5.47) gives the result. □

Lemma 5.11. Assume (5.46). Then

(5.48) ∆n (xn) ∼
|log |log xn||
(log xn)

2 .

Proof. From Lemma 5.4,

∆n (xn) ≤ Jn (xn)+4 (e |log xn|)−2

[
3

2
+ (1 + o(1))

∫ n

0

x4bs

n ds

]
+2x−2

n (1+ o(1))

∫ n

0

x2bs

n b2sds.
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The substitution t = 4bs |log xn| gives

∫ n

0

x4bs

n ds =
1

log b

∫ 4bn|log xn|

4|log xn|
e−tdt

t

≤ 1

log b

[∫ 4

4|log xn|

dt

t
+

∫ max{4bn|log xn|,4}

4

e−tdt

]
≤ C log |log xn|−1 + C.

Similarly, t = 2bs |log xn| gives

∫ n

0

x2bs

n b2sds =
1

log b (2 |log xn|)2
∫ 2bn|log xn|

2|log xn|
e−ttdt.

Combined with Lemma 5.10, this gives

(5.49) ∆n (xn) ≤ C
|log |log xn||
(log xn)

2 .

For the opposite inequality, we have to go back into the proof of Lemma 5.4. Assume that
G is given by (5.4), and h (t) is given by (5.5). Let

Ij (t) :=

∫ j+1

j

eG(j,t)dt =

∫ j+1

j

x2(bj+bt)−2
(
bj − bt

)2
dt.

We see that

Ij+1 (t) = b2
∫ j+1

j

x2b(bj+bt)−2
(
bj − bt

)2
dt

≤ b2
∫ j+1

j

x2(bj+bt)−2
(
bj − bt

)2
dt = b2Ij (t) .

It follows that we can omit the 2 terms bracketing the maximum term in our lower bound
in Lemma 5.4, while incurring at most a constant factor. Let us make this more precise.
Choose an integer r such that h (t) ∈ (r, r + 1]. If h (t) > n, redefine r = n. We have from
the above ∫ r

r−1

eG(s,t)ds ≥ 1

2

∫ r

r−1

eG(s,t)ds+
1

2b2

∫ r+1

r

eG(s,t)ds.
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Then as in Lemma 5.4,

n∑
j=0

eG(j,t) ≥

[
r∑

j=1

+
n∑

j=r+1

]
eG(j,t)

≥
∫ r

0

eG(s,t)ds+

∫ n+1

r+1

eG(s,t)ds

≥
∫ r−1

0

eG(s,t)ds+
1

2

∫ r

r−1

eG(s,t)ds

+
1

2b2

∫ r+1

r

eG(s,t)ds+

∫ n+1

r+1

eG(s,t)ds

≥ 1

2b2

∫ n

0

eG(s,t)ds.

Iterating this, yields as in the proof of Lemma 5.4,

∆n (x) ≥
(

1

2b2

)2

Jn (x) .

This and Lemma 5.10, give the lower bound corresponding to (5.49). □

Proof of Theorem 2.3. We split

∫ 1

0

In (x) dx =

[∫ exp(− 1
nεn

)

0

+

∫ 1−ζn/bn

exp(− 1
nεn

)
+

∫ 1

1−ζn/bn

]
In (x) dx.(5.50)

The restrictions on (εn) and (ζn) are as in Lemma 5.9. Here from Lemma 5.9,

(5.51)

∫ 1

1−ζn/bn
In (x) dx+

∫ exp(− 1
nεn

)

0

In (x) dx = o
(√

n
)
.

Next, from Lemmas 5.10, 5.11, for the range x ∈
[
exp

(
− 1

nεn

)
, 1− ζn/b

n
]

I2n (x) ∼
Jn (x)

Kn (x, x)
2 ∼

(
log |log x|−1)−1

|log x|2
.
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Hence ∫ 1− ζn
bn

exp(− 1
nεn

)
In (x) dx

∼
∫ 1− ζn

bn

exp(− 1
nεn

)

(
log |log x|−1)−1/2 dx

|log x|

=

∫ 1−exp(− 1
nεn

)

ζn
bn

(
log |log (1− t)|−1)−1/2 dt

|log (1− t)|

∼
∫ 1

nεn
(1+o(1))

ζn
bn

(
log t−1

)−1/2 dt

t

=

∫ n log b−log ζn

log 1
nεn

(1+o(1))

s−1/2ds

∼
√
n,

by our hypotheses (5.43), provided {εn} decreases sufficiently slowly to 0. This and (5.50),
(5.51) give the result. □

5.5. Proofs for Theorem 2.4 and Corollary 2.5.

Proof of Theorem 2.4. We first make a crude estimate on the expected number of zeros near
the origin, using the same idea as in the proof of Lemma 5.1. Since Kn (x, x) ≥ 1, we obtain
from (2.1)-(2.2) that

In (x) ≤
√

K
(1,1)
n (x, x) =

√√√√ n∑
k=1

λ2
kx

2λk−2 ≤
n∑

k=1

λkx
λk−1.

Hence, for any c ∈ (0, 1), we have by (2.13) that

E[Nn([0, c])] =

∫ c

0

In (x) dx ≤
n∑

k=1

cλk ≤ C

n∑
k=1

c(a log k)/2 = C

n∑
k=1

k(a log c)/2.

The latter sums are uniformly bounded for all n ∈ N if a log c < −2. Thus we can choose
a sufficiently small s ∈ (0, 1) so that E[Nn([0, s])] is uniformly bounded for all n ∈ N. To
estimate E[Nn([s, 1])], we write the Kac-Rice formula (2.1)-(2.2) in the following equivalent
form:

E[Nn([a, b])] =
1

2π

∫ b

a

((
u′
n(x)

un(x)

)′

+
u′
n(x)

xun(x)

)1/2

dx,
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where un(x) = Kn(x, x) =
∑n

k=0 x
2λk . Then

E[Nn([s, 1])] =
1

2π

∫ 1

s

(
u′′
n(x)

un(x)
+

u′
n(x)

xun(x)
−
(
u′
n(x)

un(x)

)2
)1/2

dx

≤ 1

2π

∫ 1

s

(
u′′
n(x)

un(x)
+

u′
n(x)

xun(x)

)1/2

dx =
1

2π

∫ 1

s

(
u′
n(x)

un(x)

(
u′′
n(x)

u′
n(x)

+
1

x

))1/2

dx

≤C

(∫ 1

s

u′
n(x)

un(x)
dx

)1/2 (∫ 1

s

(
u′′
n(x)

u′
n(x)

+
1

x

)
dx

)1/2

(by Cauchy-Schwarz)

=C

(
log un(x)

∣∣∣1
s

)1/2 (
log u′

n(x)
∣∣∣1
s
+ log x

∣∣∣1
s

)1/2

≤ C
√

log n

√√√√log
n∑

k=1

λk.

□

Proof of Corollary 2.5. If we rearrange terms in the random polynomial (1.1), then we obtain
a random polynomial with the same distribution function and the same expected number
of real zeros because the random coefficients {ck}∞k=0 are i.i.d. Hence, we can assume that
the exponents {λk}∞k=1 ⊂ N form an increasing sequence, so that (2.13) is satisfied. Since∑n

k=1 λk = O(np+1), we immediately obtain an estimate of the form E[Nn([0, 1])] = O(log n)
from Theorem 2.4.

The next step is to estimate E[Nn([1,∞))]. Recalling that λn = max1≤k≤n λk, we define
a new polynomial Qn(x) := xλnPn(1/x), then the roots of Pn on [1,∞) are reciprocals
of the roots of Qn on (0, 1]. Thus, we reduce the estimate on E[Nn([1,∞))] for Pn to the
corresponding estimate on E[Nn([0, 1])] for Qn. Note that Qn is a random polynomial with
i.i.d. Gaussian coefficients and exponents λn−λk, k = 1, 2, . . . , n. It is clear that

∑n
k=1(λn−

λk) = O(np+1), so that E[Nn([1,∞))] = O(log n) follows by applying Theorem 2.4 to Qn

(after rearranging terms).
Finally, we use the change of variable x → −x, and observe that the roots of Pn in (−∞, 0]

are symmetric about the origin to the roots of Qn(x) = Pn(−x) =
∑n

k=0(−1)λkckx
λk in

[0,∞). Since the random variables (−1)λkck are also i.i.d. Gaussian, we conclude from the
first part of this proof that E[Nn((−∞, 0])] = O(log n) too. □

5.6. Proof of Theorem 2.6. We first prove:

Lemma 5.12. Let B ≥ e and 0 < ρ < 1. Assume that

(5.52)
logB

B
≤ 1

2
|log ρ| .

Then for x ∈ [0, ρ] ,

(5.53) In (x)
2 ≤ 1

2x2

{
B2 +

2min
{
nxB, Kn

(
x1/2, x1/2

)}
Kn (x, x)

}
.
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Proof. We split the sum in ∆n (x) into two terms:

∆n (x) =

 ∑
j,k:|λj−λk|≤B

+
∑

j,k:|λj−λk|>B

x2λjx2λk (λj − λk)
2

= (Σ1 + Σ2) .

First,

Σ1 ≤ B2
∑

j,k:|λj−λk|≤B

x2λjx2λk ≤ B2Kn (x, x)
2 .

Next for a term in Σ2, we have

|λj − λk| > B.

Suppose for example λj > λk. Then

λj > λk +B > B.

Note too that log t
t

is decreasing for t ≥ e, so our hypotheses give

log ρ+
log λj

λj

≤ 1

2
log ρ for λj ≥ B.

Then for λj ≥ B, and x ∈ [0, ρ] ,

x2λjx2λk (λj − λk)
2

≤ x2λjx2λkλ2
j

= x2λk exp

(
2λj

{
log x+

log λj

λj

})
≤ x2λk exp

(
2λj

{
log x+

logB

B

})
≤ x2λk exp

(
2λj

{
log x+

1

2
|log ρ|

})
≤ x2λk exp

(
2λj

{
1

2
log x

})
= x2λkxλj .

So

Σ2 =
∑

j,k:|λj−λk|>B

x2λjx2λk (λj − λk)
2

≤
∑

j,k:λj>λk+B

x2λkxλj +
∑

j,k:λk>λj+B

x2λjxλk

≤ 2Kn (x, x)min
{
nxB, Kn

(
x1/2, x1/2

)}
.

Then

∆n (x) ≤
{
B2Kn (x, x)

2 + 2Kn (x, x)min
{
nxB, Kn

(
x1/2, x1/2

)}}
,

and then (5.53) follows from (5.2) and (2.1). □
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Proof of Theorem 2.6. (a) We choose

B = A log n

for some large enough A : we need A so large that

log (A log n)

A log n
≤ 1

2
|log ρ| for n ≥ 2.

Then Lemma 5.12 gives for x ∈ [0, ρ] ,

In (x) ≤
1

2x2

{
(A log n)2 + 2nρA logn

}
≤ 1

x2
(A log n)2 ,

if A is large enough.
(b) Let us consider t ∈ [1

ρ
,∞). Write t = x−1, where 0 < x < ρ. We have

In (t) = In
(
x−1
)
=

√
x2∆n (x−1)

2Kn (x−1, x−1)
,

by Lemma 5.2. Let
Λ = max {λj : 1 ≤ j ≤ n} ;

λ∗
j = Λ− λj for all 0 ≤ j ≤ n.

Note that 0 is amongst the new exponents. Then

∆n

(
x−1
)
= x−4Λ

{
n∑

j,k=0

x2λ∗
jx2λ∗

k

(
λ∗
j − λ∗

k

)2}
= x−4Λ∆∗

n (x) ,

where ∆∗
n corresponds to the exponents

{
λ∗
j

}
. Similarly,

Kn

(
x−1, x−1

)2
= x−2Λ

n∑
j=0

x2λ∗
j = x−2ΛK∗

n (x, x) ,

where K∗
n corresponds to the exponents

{
λ∗
j

}
. So

In
(
x−1
)2

= x2 ∆∗
n (x)

2K∗
n (x, x)

2 = x4I∗n (x)
2 .

where I∗n (x) corresponds to the exponents
{
λ∗
j

}
. As above, if x ∈ (0, ρ],

I∗n (x)
2 ≤ 1

x2
(A log n)2

This yields

In (t)
2 ≤ 1

t2
(A log n)2 ,

if t ∈ [1
ρ
,∞).

(c) Using (2.1), we obtain that

In(x)
2 ≤ K

(1,1)
n (x, x)

Kn (x, x)
=

∑n
k=1 λ

2
kx

2λk−2∑n
k=0 x

2λk
≤ max1≤k≤n λ

2
k

x2

∑n
k=1 x

2λk∑n
k=0 x

2λk
≤ max1≤k≤n λ

2
k

x2
.

□

We present one last elementary tail estimate:
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Lemma 5.13. Let R > 1. Then∫ ∞

R

In (x) dx ≤

(
n∑

j=0

Rλj−λn

)(
n−1∑
k=0

Rλk−λn

)
.

Proof. Since Kn (x, x) ≥ x2λn ,

I2n (x) ≤
1

2

n∑
j,k=0

x2(λj+λk−2λn−1) (λj − λk)
2 .

Using the inequality
√
a+ b ≤

√
a+

√
b for a, b ≥ 0, gives

In (x) ≤
1√
2

n∑
j,k=0

xλj+λk−2λn−1 |λj − λk| .

Hence ∫ ∞

R

In (x) dx ≤
n∑

j,k=0,j ̸=k

Rλj+λk−2λn
|(λj − λn) + (λn − λk)|

λn − λj + λn − λk

≤
n∑

j,k=0,j ̸=k

Rλj+λk−2λn ≤

(
n∑

j=0

Rλj−λn

)(
n−1∑
k=0

Rλk−λn

)
.

□

6. Proofs for Section 3

Proof of Theorem 3.4. Since the random coefficients {ck}∞k=0 are i.i.d., if we rearrange terms
in the random polynomial (1.1), then we obtain a random polynomial with the same distribu-
tion function and the same expected number of real zeros. Hence, we can always assume that
the exponents {λk}nk=0 form an increasing sequence. Note that each sk :=

∑k
i=0 ci, k ∈ N, is

a continuous random variable as all {ck}∞k=0 are continuous, so that P(sk = 0) = 0, k ∈ N.
Thus, we can estimate E[Nn((0, 1])] by combining Corollary 3.2 and Theorem 3.3:

E[Nn((0, 1])] ≤
n∑

k=1

[k/2] + 1

k + 1

(
k

[k/2]

)
2−k.(6.1)

Making the change of variable x → −x, we observe that the roots of Pn in [−1, 0) are sym-
metric about the origin to the roots of Qn(x) = Pn(−x) =

∑n
k=0(−1)λkckx

λk in (0, 1]. Since
the random variables (−1)λkck are also i.i.d., and have the same symmetric and continuous
distribution function as ck, estimate (6.1) also holds for Qn, which gives that

E[Nn([−1, 0))] = E[Nn((0, 1])] ≤
n∑

k=1

[k/2] + 1

k + 1

(
k

[k/2]

)
2−k.

Using another change of variable x → 1/x, we consider the random polynomials Rn(x) =
xλnPn(1/x) =

∑n
k=0 ckx

λn−λk , whose roots in (0, 1] and [−1, 0) match the roots of Pn in
[1,∞) and (−∞,−1] respectively. It clear that the associated sums of coefficients for Rn

are s̃k,n :=
∑k

i=0 cn−i, k = 0, . . . , n, and that the distribution function for s̃k,n is the same
as that of sk, for all k = 0, . . . , n. Hence the same argument leading to (6.1) applies to Rn,
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and we obtain the same upper bounds for the expected number of zeros of Pn in [1,∞) and
(−∞,−1]. We summarize all estimates as follows

E[Nn(R)] = E[Nn((−∞, 1))] + E[Nn([−1, 0))] + E[Nn((0, 1])] + E[Nn((1,∞))](6.2)

≤ 4
n∑

k=1

[k/2] + 1

k + 1

(
k

[k/2]

)
2−k,

where we also used that P(Pn(x) = 0) = P(c0 = 0) = 0 since c0 has continuous distribution.
To estimate the binomial coefficients in (6.2), we use the approximation of n! by Stirling’s

asymptotic series. In particular, Robbins [24] provides the following estimates

nn exp

(
1

12n+ 1
− n

)√
2πn < n! < nn exp

(
1

12n
− n

)√
2πn, n ∈ N.

Applying these estimates in (6.2), we obtain the upper bound 4
√
n stated in (3.3). □

For the case of arbitrary positive real exponents {λk}∞k=0, we approximate them with ra-
tional numbers that have the same denominator, and carry over the bounds for the expected
number of real zeros from the polynomial case.

Lemma 6.1. For any sequence of real positive numbers {λk}nk=0, let rk(j) = mk(j)/N(j) be
rational numbers such that limj→∞ rk(j) = λk, k = 1, . . . , n. If {ck}nk=0 are i.i.d. random
variables with an absolutely continuous distribution, then

(6.3) E

[
Nn

(
n∑

k=0

ckx
λk , [0, 1]

)]
≤ lim sup

j→∞
E

[
Nn

(
n∑

k=0

ckx
mk(j), [0, 1]

)]
, n ∈ N.

Proof. We first note that the function f(x) = x1/N(j) is a bijection of [0, 1] that gives one-to-
one correspondence between zeros of

∑n
k=0 ckx

mk(j) and
∑n

k=0 ckx
rk(j) on [0, 1]. Hence

E

[
Nn

(
n∑

k=0

ckx
mk(j), [0, 1]

)]
= E

[
Nn

(
n∑

k=0

ckx
rk(j), [0, 1]

)]
(6.4)

for all j ∈ N, as we count zeros without multiplicities. The expectations in (6.3) and (6.4)
can be expressed via the following version of Kac-Rice formula found by Zaporozhets [29,
Theorem 1] (see also Theorem 2.1 of [9], and let k = 1 there). We note that the formula below
was stated in [29] and [9] for regular polynomials, but it is also valid for Müntz polynomials
by the same proof. Let p(x) be the common probability density function for the i.i.d. random
variables {ck}nk=0. Then we have

E

[
Nn

(
n∑

k=0

ckx
λk , [a, b]

)]
(6.5)

=

∫ b

a

∫
Rn

p

(
−

n∑
k=1

ckx
λk

)
n∏

k=1

p(ck)

∣∣∣∣∣
n∑

k=1

λkckx
λk−1

∣∣∣∣∣ dc1 . . . dcn dx.
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Clearly, analogous formula holds with rk(j) instead of λk:

E

[
Nn

(
n∑

k=0

ckx
rk(j), [a, b]

)]
(6.6)

=

∫ b

a

∫
Rn

p

(
−

n∑
k=1

ckx
rk(j)

)
n∏

k=1

p(ck)

∣∣∣∣∣
n∑

k=1

rk(j)ckx
rk(j)−1

∣∣∣∣∣ dc1 . . . dcn dx.
If p(x) is continuous, then the integrand in (6.6) continuously depends on the exponents
rk(j), k = 1, . . . , n. Hence the integrand of (6.6) converges to that of (6.5) pointwise as
j → ∞, and (6.3) follows from Fatou’s Theorem combined with (6.4). If p(x) is an arbitrary
density, then we can change it on a set of arbitrarily small measure to make continuous
by Lusin’s Theorem. This implies convergence of the integrand of (6.6) to that of (6.5) in
measure as j → ∞. Thus, we can extract a subsequence jm, for which this convergence takes
place almost everywhere, and Fatou’s Theorem applies to this subsequence as before, giving
(6.3) in view of (6.4). □

We are ready to deduce Theorem 3.5 from Theorem 3.4.

Proof of Theorem 3.5. If {λk}∞k=1 are arbitrary distinct positive real numbers, we can ap-
proximate them by rational numbers rk(j) = mk(j)/N(j) such that limj→∞ rk(j) = λk, k =
1, . . . , n. Applying Lemma 6.1 and Theorem 3.4, we obtain that (3.2) holds for these general
exponents {λk}∞k=1.

As in the proof of Theorem 3.4, we assume that the exponents {λk}nk=1 form an increasing
sequence, and make the change of variable x → 1/x. This gives the random polynomials
Rn(x) = xλnPn(1/x) =

∑n
k=0 ckx

λn−λk , whose roots in (0, 1] correspond to the roots of Pn in
[1,∞). Applying (3.2) to Rn, we obtain the matching estimate for zeros of Pn in [1,∞), so
that

E[Nn([0,∞)] = E[Nn((0, 1])] + E[Nn((1,∞))] ≤ 2
n∑

k=1

[k/2] + 1

k + 1

(
k

[k/2]

)
2−k.

We used above that P(Pn(x) = 0) = P(c0 = 0) = 0 as c0 has absolutely continuous distribu-
tion. □

Proof of Theorem 3.6. We first consider the case {λk}nk=1 ⊂ N, and use some ideas from
the proof of Theorem 3.4. If the random variables {ck}∞k=0 are degenerate, i.e., equal to a
constant C with probability one, then the random polynomials (1.1) take the form

Pn(x) = C

n∑
k=0

xλk .

It is obvious that such polynomials have no positive roots. Assuming now that the random
coefficients are non-degenerate, we recall that the probability of sn =

∑n
i=0 ci to vanish for

any given n ∈ N does not exceed C1/
√
n for a constant C1 > 0 that depends only on the

distribution of ci, see Theorem 1(d) of [25]. It follows from Descartes’ rule of signs that
Nn((0,∞)) ≤ n for any polynomial of the form (1.1). Thus, conditioning on the event
{sn = 0}, we obtain that

(6.7) E[Nn((0,∞))|{sn = 0}] ≤ C1

√
n.
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Next, we condition on the event {sn ̸= 0}, in which case we can use Corollary 3.2 and
estimate Nn((0, 1]) by V (s0, . . . , sn). Theorem 2 of [26] states that the probability of a sign

change in the sequence sk =
∑k

i=0 ci, k ∈ N, at the k-th step, is of the order k−1/2, namely
P(sk−1sk < 0) = O(k−1/2). This immediately implies that

(6.8) E[Nn((0, 1])|{sn ̸= 0}] ≤ E[V (s0, . . . , sn)|{sn ̸= 0}] ≤ C2

n∑
k=1

k−1/2 ≤ C3

√
n

for some positive constants C2 and C3. Applying the standard change of variable x → 1/x,
we argue as in the proof of Theorem 3.4 to deduce from (6.8) that

E[Nn((0,∞))|{sn ̸= 0}] = O(
√
n).

This bound, combined with (6.7) and the possiblity of one zero at the origin, gives (3.5).
If {λk}∞k=1 are arbitrary distinct positive real numbers, we repeat the argument already

used in the proof of Theorem 3.5, approximating general λk by rational numbers, and using
Lemma 6.1 together with already proved estimate (3.5) for natural exponents. The change
of variable x → 1/x provides the estimate for E[Nn((1,∞))] as before. □

7. Proofs for Section 4

Proof of Theorem 4.1. By the Strong Law of Large Numbers [11, p. 295], we have that

lim
n→∞

sn
n

= E[c0] ̸= 0 a.s.

Suppose first that {λk}nk=1 ⊂ N. As before, we assume without loss of generality that
the exponents are arranged in the increasing order. If the lim sup in (4.1) is infinite with
positive probability, then Corollary 3.2 immediately implies that the number of sign changes
in the sequence sn =

∑n
k=0 ck tends to ∞ as n → ∞ with positive probability. This directly

contradicts the above Law of Large Numbers, as sn must follow the sign of E[c0] for sufficiently
large values of n with probability one. Hence, (4.1) holds for the case of natural exponents.
To prove that it holds for arbitrary distinct positive real exponents, one needs to apply the
same approximation argument as in the proof of Theorem 3.5, and use Lemma 6.1. □

Proof of Theorem 4.2. Letting Xk := ck − E[ck], we obtain from Theorem 12 of [22, p. 272]
that ∑n

k=0 ck −
∑n

k=0 E[ck]
an

=

∑n
k=0Xk

an
→ 0 a.s.

Suppose that E[ck] ≥ ε and an ≤ Cn for all n ≥ N. Then we have that

lim inf
n→∞

sn
an

= lim inf
n→∞

(∑n
k=0 ck −

∑n
k=0 E[ck]

an
+

∑n
k=0 E[ck]
an

)
≥ lim inf

n→∞

n+ 1

an
ε ≥ Cε a.s.

We now follow the proof of Theorem 4.1 to complete the argument. First, we assume that
{λk}nk=1 ⊂ N. If the lim sup in (4.1) is infinite with positive probability, then Corollary 3.2
implies that the number of sign changes in the sequence sn tends to ∞ as n → ∞ with
positive probability. This contradicts the above lim inf estimate, so that (4.1) holds true.
Transition to arbitrary real exponents is done again by approximation, as in the proof of
Theorem 3.5.
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The case E[ck] ≤ −ε is handled similarly:

lim sup
n→∞

sn
an

= lim sup
n→∞

(∑n
k=0 ck −

∑n
k=0 E[ck]

an
+

∑n
k=0 E[ck]
an

)
≤ −ε lim sup

n→∞

n+ 1

an
≤ −Cε a.s.

The rest of the proof repeats its first part. □
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[7] P. Erdős and G. A. Hunt, Changes of sign of sums of random variables, Pacific J. Math.
3 (1953), 673–687.
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